CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Aggregating Crowdsourced Quantitative Claims: Additive and Multiplicative Models
Ouyang, Robin Wentao1; Kaplan, Lance M.2; Toniolo, Alice3; Srivastava, Mani4,5; Norman, Timothy J.3
2016-07-01
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
ISSN1041-4347
卷号28期号:7页码:1621-1634
摘要Truth discovery is an important technique for enabling reliable crowdsourcing applications. It aims to automatically discover the truths from possibly conflicting crowdsourced claims. Most existing truth discovery approaches focus on categorical applications, such as image classification. They use the accuracy, i.e., rate of exactly correct claims, to capture the reliability of participants. As a consequence, they are not effective for truth discovery in quantitative applications, such as percentage annotation and object counting, where similarity rather than exact matching between crowdsourced claims and latent truths should be considered. In this paper, we propose two unsupervised Quantitative Truth Finders (QTFs) for truth discovery in quantitative crowdsourcing applications. One QTF explores an additive model and the other explores a multiplicative model to capture different relationships between crowdsourced claims and latent truths in different classes of quantitative tasks. These QTFs naturally incorporate the similarity between variables. Moreover, they use the bias and the confidence instead of the accuracy to capture participants' abilities in quantity estimation. These QTFs are thus capable of accurately discovering quantitative truths in particular domains. Through extensive experiments, we demonstrate that these QTFs outperform other state-of-the-art approaches for truth discovery in quantitative crowdsourcing applications and they are also quite efficient.
关键词Crowdsourcing truth discovery quantitative task probabilistic graphical model
DOI10.1109/TKDE.2016.2535383
收录类别SCI
语种英语
资助项目U.S. ARL ; U.K. Ministry of Defense[W911NF-06-3-0001] ; U.S. NSF[CNS-1213140]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:000380117500002
出版者IEEE COMPUTER SOC
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/8261
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ouyang, Robin Wentao
作者单位1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing, Peoples R China
2.US Army Res Lab, Networked Sensing & Fus Branch, Adelphi, MD 20783 USA
3.Univ Aberdeen, Dept Comp Sci, Aberdeen, Scotland
4.Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
5.Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
推荐引用方式
GB/T 7714
Ouyang, Robin Wentao,Kaplan, Lance M.,Toniolo, Alice,et al. Aggregating Crowdsourced Quantitative Claims: Additive and Multiplicative Models[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2016,28(7):1621-1634.
APA Ouyang, Robin Wentao,Kaplan, Lance M.,Toniolo, Alice,Srivastava, Mani,&Norman, Timothy J..(2016).Aggregating Crowdsourced Quantitative Claims: Additive and Multiplicative Models.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,28(7),1621-1634.
MLA Ouyang, Robin Wentao,et al."Aggregating Crowdsourced Quantitative Claims: Additive and Multiplicative Models".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 28.7(2016):1621-1634.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ouyang, Robin Wentao]的文章
[Kaplan, Lance M.]的文章
[Toniolo, Alice]的文章
百度学术
百度学术中相似的文章
[Ouyang, Robin Wentao]的文章
[Kaplan, Lance M.]的文章
[Toniolo, Alice]的文章
必应学术
必应学术中相似的文章
[Ouyang, Robin Wentao]的文章
[Kaplan, Lance M.]的文章
[Toniolo, Alice]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。