CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Deep and Structured Robust Information Theoretic Learning for Image Analysis
Deng, Yue1,2; Bao, Feng1; Deng, Xuesong3; Wang, Ruiping3; Kong, Youyong4; Dai, Qionghai1
2016-09-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号25期号:9页码:4209-4221
摘要This paper presents a robust information theoretic (RIT) model to reduce the uncertainties, i.e., missing and noisy labels, in general discriminative data representation tasks. The fundamental pursuit of our model is to simultaneously learn a transformation function and a discriminative classifier that maximize the mutual information of data and their labels in the latent space. In this general paradigm, we, respectively, discuss three types of the RIT implementations with linear subspace embedding, deep transformation, and structured sparse learning. In practice, the RIT and deep RIT are exploited to solve the image categorization task whose performances will be verified on various benchmark data sets. The structured sparse RIT is further applied to a medical image analysis task for brain magnetic resonance image segmentation that allows group-level feature selections on the brain tissues.
关键词Data embedding mutual information deep learning structured-sparse learning image classification brain MRI segmentation
DOI10.1109/TIP.2016.2588330
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61327902] ; National Natural Science Foundation of China[61120106003] ; National Natural Science Foundation of China[61379083] ; National Science Foundation of Jiangsu Province, China[BK20150650]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000380355600005
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:24[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/8250
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Deng, Yue
作者单位1.Tsinghua Univ, Automat Dept, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
2.Univ Calif San Francisco, San Francisco Med Ctr, San Francisco, CA 94158 USA
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
4.Southeast Univ, Sch Comp Sci & Engn, Nanjing 210000, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Deng, Yue,Bao, Feng,Deng, Xuesong,et al. Deep and Structured Robust Information Theoretic Learning for Image Analysis[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2016,25(9):4209-4221.
APA Deng, Yue,Bao, Feng,Deng, Xuesong,Wang, Ruiping,Kong, Youyong,&Dai, Qionghai.(2016).Deep and Structured Robust Information Theoretic Learning for Image Analysis.IEEE TRANSACTIONS ON IMAGE PROCESSING,25(9),4209-4221.
MLA Deng, Yue,et al."Deep and Structured Robust Information Theoretic Learning for Image Analysis".IEEE TRANSACTIONS ON IMAGE PROCESSING 25.9(2016):4209-4221.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Deng, Yue]的文章
[Bao, Feng]的文章
[Deng, Xuesong]的文章
百度学术
百度学术中相似的文章
[Deng, Yue]的文章
[Bao, Feng]的文章
[Deng, Xuesong]的文章
必应学术
必应学术中相似的文章
[Deng, Yue]的文章
[Bao, Feng]的文章
[Deng, Xuesong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。