CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
True Randomness from Big Data
Papakonstantinou, Periklis A.1; Woodruff, David P.2; Yang, Guang3
2016-09-26
发表期刊SCIENTIFIC REPORTS
ISSN2045-2322
卷号6页码:8
摘要Generating random bits is a difficult task, which is important for physical systems simulation, cryptography, and many applications that rely on high-quality random bits. Our contribution is to show how to generate provably random bits from uncertain events whose outcomes are routinely recorded in the form of massive data sets. These include scientific data sets, such as in astronomics, genomics, as well as data produced by individuals, such as internet search logs, sensor networks, and social network feeds. We view the generation of such data as the sampling process from a big source, which is a random variable of size at least a few gigabytes. Our view initiates the study of big sources in the randomness extraction literature. Previous approaches for big sources rely on statistical assumptions about the samples. We introduce a general method that provably extracts almost-uniform random bits from big sources and extensively validate it empirically on real data sets. The experimental findings indicate that our method is efficient enough to handle large enough sources, while previous extractor constructions are not efficient enough to be practical. Quality-wise, our method at least matches quantum randomness expanders and classical world empirical extractors as measured by standardized tests.
DOI10.1038/srep33740
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61222202] ; National Natural Science Foundation of China[61433014] ; National Natural Science Foundation of China[61502449] ; National Natural Science Foundation of China[61602440] ; China National Program
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000384416200001
出版者NATURE PUBLISHING GROUP
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/8141
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Woodruff, David P.
作者单位1.Rutgers State Univ, MSIS, Piscataway, NJ 08853 USA
2.IBM Res Almaden, San Jose, CA 95120 USA
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Papakonstantinou, Periklis A.,Woodruff, David P.,Yang, Guang. True Randomness from Big Data[J]. SCIENTIFIC REPORTS,2016,6:8.
APA Papakonstantinou, Periklis A.,Woodruff, David P.,&Yang, Guang.(2016).True Randomness from Big Data.SCIENTIFIC REPORTS,6,8.
MLA Papakonstantinou, Periklis A.,et al."True Randomness from Big Data".SCIENTIFIC REPORTS 6(2016):8.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Papakonstantinou, Periklis A.]的文章
[Woodruff, David P.]的文章
[Yang, Guang]的文章
百度学术
百度学术中相似的文章
[Papakonstantinou, Periklis A.]的文章
[Woodruff, David P.]的文章
[Yang, Guang]的文章
必应学术
必应学术中相似的文章
[Papakonstantinou, Periklis A.]的文章
[Woodruff, David P.]的文章
[Yang, Guang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。