CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Parallel and Streaming Truth Discovery in Large-Scale Quantitative Crowdsourcing
Ouyang, Robin Wentao1; Kaplan, Lance M.2; Toniolo, Alice3; Srivastava, Mani4,5; Norman, Timothy J.3
2016-10-01
发表期刊IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
ISSN1045-9219
卷号27期号:10页码:2984-2997
摘要To enable reliable crowdsourcing applications, it is of great importance to develop algorithms that can automatically discover the truths from possibly noisy and conflicting claims provided by various information sources. In order to handle crowdsourcing applications involving big or streaming data, a desirable truth discovery algorithm should not only be effective, but also be scalable. However, with respect to quantitative crowdsourcing applications such as object counting and percentage annotation, existing truth discovery algorithms are not simultaneously effective and scalable. They either address truth discovery in categorical crowdsourcing or perform batch processing that does not scale. In this paper, we propose new parallel and streaming truth discovery algorithms for quantitative crowdsourcing applications. Through extensive experiments on real-world and synthetic datasets, we demonstrate that 1) both of them are quite effective, 2) the parallel algorithm can efficiently perform truth discovery on large datasets, and 3) the streaming algorithm processes data incrementally, and it can efficiently perform truth discovery both on large datasets and in data streams.
关键词Crowdsourcing truth discovery quantitative task big data parallel algorithm streaming algorithm
DOI10.1109/TPDS.2016.2515092
收录类别SCI
语种英语
资助项目U.S. ARL ; U.K. Ministry of Defense[W911NF-06-3-0001] ; NSF[CNS-1213140]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000384239300015
出版者IEEE COMPUTER SOC
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/8128
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ouyang, Robin Wentao
作者单位1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing, Peoples R China
2.US Army Res Lab, Networked Sensing Fus Branch, Adelphi, MD 20783 USA
3.Univ Aberdeen, Dept Comp Sci, Aberdeen, Scotland
4.Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
5.Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
推荐引用方式
GB/T 7714
Ouyang, Robin Wentao,Kaplan, Lance M.,Toniolo, Alice,et al. Parallel and Streaming Truth Discovery in Large-Scale Quantitative Crowdsourcing[J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,2016,27(10):2984-2997.
APA Ouyang, Robin Wentao,Kaplan, Lance M.,Toniolo, Alice,Srivastava, Mani,&Norman, Timothy J..(2016).Parallel and Streaming Truth Discovery in Large-Scale Quantitative Crowdsourcing.IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,27(10),2984-2997.
MLA Ouyang, Robin Wentao,et al."Parallel and Streaming Truth Discovery in Large-Scale Quantitative Crowdsourcing".IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 27.10(2016):2984-2997.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ouyang, Robin Wentao]的文章
[Kaplan, Lance M.]的文章
[Toniolo, Alice]的文章
百度学术
百度学术中相似的文章
[Ouyang, Robin Wentao]的文章
[Kaplan, Lance M.]的文章
[Toniolo, Alice]的文章
必应学术
必应学术中相似的文章
[Ouyang, Robin Wentao]的文章
[Kaplan, Lance M.]的文章
[Toniolo, Alice]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。