CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
ASELM: Adaptive semi-supervised ELM with application in question subjectivity identification
Fu, Hongping1; Niu, Zhendong1; Zhang, Chunxia2; Yu, Hanchao3; Ma, Jing1; Chen, Jie1; Chen, Yiqiang3; Liu, Junfa3
2016-09-26
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号207页码:599-609
摘要Question subjectivity identification in Community Question Answering (CQA) has attracted a lot of attentions in recent years. With the rapid development of CQA, subjective questions posted by users are growing exponentially, which presents two challenges for question subjectivity identification. The first one is the data imbalance between subjective and objective questions. The second one is that the amount of manually labelled training data is hard to catch up with the fast developing speed of CQA. In this paper, we propose an adaptive semi-supervised Extreme Learning Machine (ASELM) to solve those two challenges. To resolve the data imbalance problem, ASELM employs the different impacts on identification performance caused by the imbalanced data. Second, the proposed method introduces the unlabelled data, and builds a model about the ratio between the number of labelled and unlabelled data based on Gaussian Model, which is applied to automatically generate the constraint on the unlabelled data. Experimental results showed ASELM improved identification performance for the imbalanced data, and outperformed the performance of basic ELM, SELM, Weighted ELM and SS-ELM on both F1 measure and accuracy. (C) 2016 Elsevier B.V. All rights reserved.
关键词ELM Adaptive semi-supervised ELM Question subjectivity identification Community question answering
DOI10.1016/j.neucom.2016.05.041
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61370137] ; National Natural Science Foundation of China[61272361] ; National Natural Science Foundation of China[61502456] ; National Natural Science Foundation of China[61572471] ; National Natural Science Foundation of China[61502033] ; Major Science and Technology Project of Press and Publication[GAPP ZDKJ BQ/01] ; Open Project from State Key Laboratory of Management and Control for Complex System (China)[99S9021F4D]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000382794500056
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/8088
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Chunxia
作者单位1.Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
2.Beijing Inst Technol, Sch Software, Beijing 100081, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Fu, Hongping,Niu, Zhendong,Zhang, Chunxia,et al. ASELM: Adaptive semi-supervised ELM with application in question subjectivity identification[J]. NEUROCOMPUTING,2016,207:599-609.
APA Fu, Hongping.,Niu, Zhendong.,Zhang, Chunxia.,Yu, Hanchao.,Ma, Jing.,...&Liu, Junfa.(2016).ASELM: Adaptive semi-supervised ELM with application in question subjectivity identification.NEUROCOMPUTING,207,599-609.
MLA Fu, Hongping,et al."ASELM: Adaptive semi-supervised ELM with application in question subjectivity identification".NEUROCOMPUTING 207(2016):599-609.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fu, Hongping]的文章
[Niu, Zhendong]的文章
[Zhang, Chunxia]的文章
百度学术
百度学术中相似的文章
[Fu, Hongping]的文章
[Niu, Zhendong]的文章
[Zhang, Chunxia]的文章
必应学术
必应学术中相似的文章
[Fu, Hongping]的文章
[Niu, Zhendong]的文章
[Zhang, Chunxia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。