CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Integrating heterogeneous information via flexible regularization framework for recommendation
Shi, Chuan1; Liu, Jian1; Zhuang, Fuzhen2; Yu, Philip S.3; Wu, Bin1
2016-12-01
发表期刊KNOWLEDGE AND INFORMATION SYSTEMS
ISSN0219-1377
卷号49期号:3页码:835-859
摘要Recently, there is a surge of social recommendation, which leverages social relations among users to improve recommendation performance. However, in many applications, social relations are very sparse or absent. Meanwhile, the attribute information of users or items may be rich. It is a big challenge to exploit this attribute information for the improvement of recommendation performance. In this paper, we organize objects and relations in recommender system as a heterogeneous information network and introduce meta-path-based similarity measure to evaluate the similarity of users or items. Furthermore, a matrix factorization-based dual regularization framework SimMF is proposed to flexibly integrate different types of information through adopting users' and items' similarities as regularization on latent factors of users and items. Extensive experiments not only validate the effectiveness of SimMF but also reveal some interesting findings. We find that attribute information of users and items can significantly improve recommendation accuracy, and their contribution seems more important than that of social relations. The experiments also reveal that different regularization models have obviously different impacts on users and items.
关键词Recommender system Heterogeneous information network Matrix factorization Similarity measure
DOI10.1007/s10115-016-0925-0
收录类别SCI
语种英语
资助项目National Key Basic Research and Department (973) Program of China[2013CB329606] ; National Natural Science Foundation of China[71231002] ; National Natural Science Foundation of China[61473273] ; CCF-Tencent Open Fund ; Co-construction Project of Beijing Municipal Commission of Education ; US NSF[III-1526499] ; Microsoft Research Asia Collaborative Research Program
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:000386120000002
出版者SPRINGER LONDON LTD
引用统计
被引频次:46[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/8021
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhuang, Fuzhen
作者单位1.Beijing Univ Posts & Telecommun, Beijing Key Lab Intelligent Telecommun Software &, Beijing, Peoples R China
2.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing, Peoples R China
3.Univ Illinois, Comp Sci, Chicago, IL USA
推荐引用方式
GB/T 7714
Shi, Chuan,Liu, Jian,Zhuang, Fuzhen,et al. Integrating heterogeneous information via flexible regularization framework for recommendation[J]. KNOWLEDGE AND INFORMATION SYSTEMS,2016,49(3):835-859.
APA Shi, Chuan,Liu, Jian,Zhuang, Fuzhen,Yu, Philip S.,&Wu, Bin.(2016).Integrating heterogeneous information via flexible regularization framework for recommendation.KNOWLEDGE AND INFORMATION SYSTEMS,49(3),835-859.
MLA Shi, Chuan,et al."Integrating heterogeneous information via flexible regularization framework for recommendation".KNOWLEDGE AND INFORMATION SYSTEMS 49.3(2016):835-859.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shi, Chuan]的文章
[Liu, Jian]的文章
[Zhuang, Fuzhen]的文章
百度学术
百度学术中相似的文章
[Shi, Chuan]的文章
[Liu, Jian]的文章
[Zhuang, Fuzhen]的文章
必应学术
必应学术中相似的文章
[Shi, Chuan]的文章
[Liu, Jian]的文章
[Zhuang, Fuzhen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。