CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Approximate normalized cuts without Eigen-decomposition
Jia, Hongjie1,2; Ding, Shifei1,2; Du, Mingjing1,2; Xue, Yu3
2016-12-20
发表期刊INFORMATION SCIENCES
ISSN0020-0255
卷号374页码:135-150
摘要Most traditional weighted graph clustering algorithms are solved by spectral method, which is only suitable for small scale datasets because of the high space and time complexity. How to reduce the computational complexity of graph cut clustering to process the massive complex data has become a challenging problem. To overcome this problem, we design an approximate normalized cuts algorithm without eigen-decomposition for large scale clustering. On the one hand, the space requirement of normalized cut is decreased by sampling a few data points to infer the global features of dataset instead of using the whole affinity matrix; on the other hand, the graph cut clustering procedure is accelerated in an iterative way that using the approximate weighted kernel k-means to optimize the objective function of normalized cut, which avoids the direct eigen-decomposition of Laplacian matrix. We also analyze the approximation error of the proposed algorithm and compare it with other state-of-the-arts clustering algorithms on several benchmark datasets. The experimental results demonstrate that our method can efficiently do the clustering when the number of data objects exceeds tens of thousands. (C) 2016 Elsevier Inc. All rights reserved.
关键词Normalized cut Matrix trace Weighted kernel k-means Approximate kernel matrix
DOI10.1016/j.ins.2016.09.032
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61379101] ; National Natural Science Foundation of China[61672522] ; National Key Basic Research Program of China[2013CB329502] ; Priority Academic Program Development of Jiangsu Higer Education Institutions(PAPD) ; Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology(CICAEET)
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000386645800009
出版者ELSEVIER SCIENCE INC
引用统计
被引频次:34[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7989
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ding, Shifei
作者单位1.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
3.Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Jia, Hongjie,Ding, Shifei,Du, Mingjing,et al. Approximate normalized cuts without Eigen-decomposition[J]. INFORMATION SCIENCES,2016,374:135-150.
APA Jia, Hongjie,Ding, Shifei,Du, Mingjing,&Xue, Yu.(2016).Approximate normalized cuts without Eigen-decomposition.INFORMATION SCIENCES,374,135-150.
MLA Jia, Hongjie,et al."Approximate normalized cuts without Eigen-decomposition".INFORMATION SCIENCES 374(2016):135-150.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jia, Hongjie]的文章
[Ding, Shifei]的文章
[Du, Mingjing]的文章
百度学术
百度学术中相似的文章
[Jia, Hongjie]的文章
[Ding, Shifei]的文章
[Du, Mingjing]的文章
必应学术
必应学术中相似的文章
[Jia, Hongjie]的文章
[Ding, Shifei]的文章
[Du, Mingjing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。