CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning Expressionlets via Universal Manifold Model for Dynamic Facial Expression Recognition
Liu, Mengyi1; Shan, Shiguang1,2; Wang, Ruiping1; Chen, Xilin1
2016-12-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号25期号:12页码:5920-5932
摘要Facial expression is a temporally dynamic event which can be decomposed into a set of muscle motions occurring in different facial regions over various time intervals. For dynamic expression recognition, two key issues, temporal alignment and semantics-aware dynamic representation, must be taken into account. In this paper, we attempt to solve both problems via manifold modeling of videos based on a novel mid-level representation, i.e., expressionlet. Specifically, our method contains three key stages: 1) each expression video clip is characterized as a spatial-temporal manifold (STM) formed by dense low-level features; 2) a universal manifold model (UMM) is learned over all low-level features and represented as a set of local modes to statistically unify all the STMs; and 3) the local modes on each STM can be instantiated by fitting to the UMM, and the corresponding expressionlet is constructed by modeling the variations in each local mode. With the above strategy, expression videos are naturally aligned both spatially and temporally. To enhance the discriminative power, the expressionlet-based STM representation is further processed with discriminant embedding. Our method is evaluated on four public expression databases, CK+, MMI, Oulu-CASIA, and FERA. In all cases, our method outperforms the known state of the art by a large margin.
关键词Facial expression recognition universal manifold model Riemannian manifold discriminant Learning expressionlets
DOI10.1109/TIP.2016.2615424
收录类别SCI
语种英语
资助项目973 Program[2015CB351802] ; Natural Science Foundation of China[61390511] ; Natural Science Foundation of China[61379083] ; Natural Science Foundation of China[61272321] ; Strategic Priority Research Program of the CAS[XDB02070004] ; Youth Innovation Promotion Association CAS[2015085] ; FiDiPro Program of Tekes
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000388205200016
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:39[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7955
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shan, Shiguang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai 200031, Peoples R China
推荐引用方式
GB/T 7714
Liu, Mengyi,Shan, Shiguang,Wang, Ruiping,et al. Learning Expressionlets via Universal Manifold Model for Dynamic Facial Expression Recognition[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2016,25(12):5920-5932.
APA Liu, Mengyi,Shan, Shiguang,Wang, Ruiping,&Chen, Xilin.(2016).Learning Expressionlets via Universal Manifold Model for Dynamic Facial Expression Recognition.IEEE TRANSACTIONS ON IMAGE PROCESSING,25(12),5920-5932.
MLA Liu, Mengyi,et al."Learning Expressionlets via Universal Manifold Model for Dynamic Facial Expression Recognition".IEEE TRANSACTIONS ON IMAGE PROCESSING 25.12(2016):5920-5932.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Mengyi]的文章
[Shan, Shiguang]的文章
[Wang, Ruiping]的文章
百度学术
百度学术中相似的文章
[Liu, Mengyi]的文章
[Shan, Shiguang]的文章
[Wang, Ruiping]的文章
必应学术
必应学术中相似的文章
[Liu, Mengyi]的文章
[Shan, Shiguang]的文章
[Wang, Ruiping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。