CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Multi-feature fusion deep networks
Ma, Gang1,2; Yang, Xi1; Zhang, Bo1,3; Shi, Zhongzhi1
2016-12-19
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号218页码:164-171
摘要In this paper, we propose a novel deep networks, multi-feature fusion deep networks (MFFDN), based on denoising autoencoder. MFFDN significantly reduces the classification error while giving the interpretability of the hidden-layer feature representation in learning process. Comparing with the traditional denoising autoencoder, MFFDN mainly shows the following advantages: (1) minimally retaining a certain amount of "information" constrained to a given form about its input; (2) explicitly interpreting the meaning of the feature representation in one hidden layer; (3) enhancing discriminativeness of the whole networks. At last, the experiments analysis on MNIST, CIFAR-10 and SVHN prove the state-of-the-art performance improvement of MFFDN with the advantages minimally retaining "information" constraint and the interpreted hidden feature representation. (C) 2016 Elsevier B.V. All rights reserved.
关键词Deep networks Denoising autoencoder Interpretability Discriminativeness
DOI10.1016/j.neucom.2016.08.059
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973)[2013CB329502] ; National Natural Science Foundation of China[61035003] ; National Natural Science Foundation of China[61202212] ; National Science and Technology Support Program[2012BA107B02] ; Natural Science Foundation of Jiangsu Province[BK20160276]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000388053700018
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:29[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7923
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ma, Gang
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
推荐引用方式
GB/T 7714
Ma, Gang,Yang, Xi,Zhang, Bo,et al. Multi-feature fusion deep networks[J]. NEUROCOMPUTING,2016,218:164-171.
APA Ma, Gang,Yang, Xi,Zhang, Bo,&Shi, Zhongzhi.(2016).Multi-feature fusion deep networks.NEUROCOMPUTING,218,164-171.
MLA Ma, Gang,et al."Multi-feature fusion deep networks".NEUROCOMPUTING 218(2016):164-171.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ma, Gang]的文章
[Yang, Xi]的文章
[Zhang, Bo]的文章
百度学术
百度学术中相似的文章
[Ma, Gang]的文章
[Yang, Xi]的文章
[Zhang, Bo]的文章
必应学术
必应学术中相似的文章
[Ma, Gang]的文章
[Yang, Xi]的文章
[Zhang, Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。