Institute of Computing Technology, Chinese Academy IR
| Multi-feature fusion deep networks | |
| Ma, Gang1,2; Yang, Xi1; Zhang, Bo1,3; Shi, Zhongzhi1 | |
| 2016-12-19 | |
| 发表期刊 | NEUROCOMPUTING
![]() |
| ISSN | 0925-2312 |
| 卷号 | 218页码:164-171 |
| 摘要 | In this paper, we propose a novel deep networks, multi-feature fusion deep networks (MFFDN), based on denoising autoencoder. MFFDN significantly reduces the classification error while giving the interpretability of the hidden-layer feature representation in learning process. Comparing with the traditional denoising autoencoder, MFFDN mainly shows the following advantages: (1) minimally retaining a certain amount of "information" constrained to a given form about its input; (2) explicitly interpreting the meaning of the feature representation in one hidden layer; (3) enhancing discriminativeness of the whole networks. At last, the experiments analysis on MNIST, CIFAR-10 and SVHN prove the state-of-the-art performance improvement of MFFDN with the advantages minimally retaining "information" constraint and the interpreted hidden feature representation. (C) 2016 Elsevier B.V. All rights reserved. |
| 关键词 | Deep networks Denoising autoencoder Interpretability Discriminativeness |
| DOI | 10.1016/j.neucom.2016.08.059 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | National Basic Research Program of China (973)[2013CB329502] ; National Natural Science Foundation of China[61035003] ; National Natural Science Foundation of China[61202212] ; National Science and Technology Support Program[2012BA107B02] ; Natural Science Foundation of Jiangsu Province[BK20160276] |
| WOS研究方向 | Computer Science |
| WOS类目 | Computer Science, Artificial Intelligence |
| WOS记录号 | WOS:000388053700018 |
| 出版者 | ELSEVIER SCIENCE BV |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.204/handle/2XEOYT63/7923 |
| 专题 | 中国科学院计算技术研究所期刊论文_英文 |
| 通讯作者 | Ma, Gang |
| 作者单位 | 1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China 3.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China |
| 推荐引用方式 GB/T 7714 | Ma, Gang,Yang, Xi,Zhang, Bo,et al. Multi-feature fusion deep networks[J]. NEUROCOMPUTING,2016,218:164-171. |
| APA | Ma, Gang,Yang, Xi,Zhang, Bo,&Shi, Zhongzhi.(2016).Multi-feature fusion deep networks.NEUROCOMPUTING,218,164-171. |
| MLA | Ma, Gang,et al."Multi-feature fusion deep networks".NEUROCOMPUTING 218(2016):164-171. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论