CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Weight Uncertainty in Boltzmann Machine
Zhang, Jian1,2; Ding, Shifei1,2; Zhang, Nan1,2; Xue, Yu3
2016-12-01
发表期刊Cognitive Computation
ISSN1866-9956
卷号8期号:6页码:1064-1073
摘要Based on restricted Boltzmann machine (RBM), the deep learning models can be roughly divided into deep belief networks (DBNs) and deep Boltzmann machine (DBM). However, the overfitting problems commonly exist in neural networks and RBM models. In order to alleviate the overfitting problem, lots of research has been done. This paper alleviated the overfitting problem in RBM and proposed the weight uncertainty semi-restricted Boltzmann machine (WSRBM) to improve the ability of image recognition and image reconstruction. First, this paper built weight uncertainty RBM model based on maximum likelihood estimation. And in the experimental section, this paper verified the effectiveness of the weight uncertainty deep belief network and the weight uncertainty deep Boltzmann machine. Second, in order to obtain better reconstructed images, this paper used the semi-restricted Boltzmann machine (SRBM) as the feature extractor and built the WSRBM. Lastly, this paper used hybrid Monte Carlo sampling and cRBM to improve the classification ability of WSDBM. The experiments showed that the weight uncertainty RBM, weight uncertainty DBN and weight uncertainty DBM were effective compared with the dropout method. And the WSDBM model performed well in image recognition and image reconstruction as well. This paper introduced the weight uncertainty method to RBM, and proposed a WSDBM model, which was effective in image recognition and image reconstruction.
关键词RBM DBM DBN Weight uncertainty
DOI10.1007/s12559-016-9429-1
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61379101] ; National Natural Science Foundation of China[61672522] ; National Key Basic Research Program of China[2013CB329502] ; Priority Academic Program Development of Jiangsu Higer Education Institutions ; Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000389304300005
出版者SPRINGER
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7797
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ding, Shifei
作者单位1.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
3.Nanjing Univ Informat Sci & Technol, Coll Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Jian,Ding, Shifei,Zhang, Nan,et al. Weight Uncertainty in Boltzmann Machine[J]. Cognitive Computation,2016,8(6):1064-1073.
APA Zhang, Jian,Ding, Shifei,Zhang, Nan,&Xue, Yu.(2016).Weight Uncertainty in Boltzmann Machine.Cognitive Computation,8(6),1064-1073.
MLA Zhang, Jian,et al."Weight Uncertainty in Boltzmann Machine".Cognitive Computation 8.6(2016):1064-1073.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Jian]的文章
[Ding, Shifei]的文章
[Zhang, Nan]的文章
百度学术
百度学术中相似的文章
[Zhang, Jian]的文章
[Ding, Shifei]的文章
[Zhang, Nan]的文章
必应学术
必应学术中相似的文章
[Zhang, Jian]的文章
[Ding, Shifei]的文章
[Zhang, Nan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。