CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
CCEHC: An efficient local search algorithm for weighted partial maximum satisfiability
Luo, Chuan1,2; Cai, Shaowei3; Su, Kaile4,5; Huang, Wenxuan6
2017-02-01
发表期刊ARTIFICIAL INTELLIGENCE
ISSN0004-3702
卷号243页码:26-44
摘要Weighted maximum satisfiability and (unweighted) partial maximum satisfiability (PMS) are two significant generalizations of maximum satisfiability (MAX-SAT), and weighted partial maximum satisfiability (WPMS) is the combination of the two, with more important applications in practice. Recently, great breakthroughs have been made on stochastic local search (SLS) for weighted MAX-SAT and PMS, resulting in several state-of-the-art SLS algorithms CCLS, Dist and DistUP. However, compared to the great progress of SLS on weighted MAX-SAT and PMS, the performance of SLS on WPMS lags far behind. In this paper, we present a new SLS algorithm named CCEHC for WPMS. CCEHC employs an extended framework of CCLS with a heuristic emphasizing hard clauses, called EHC. With strong accents on hard clauses, EHC has three components: a variable selection mechanism focusing on configuration checking based only on hard clauses, a weighting scheme for hard clauses, and a biased random walk component. Extensive experiments demonstrate that CCEHC significantly outperforms its state-of-the-art SLS competitors. Further experimental results on comparing CCEHC with a state-of-the-art complete solver show the effectiveness of CCEHC on a number of application WPMS instances, and indicate that CCEHC might be beneficial in practice. Also, empirical analyses confirm the effectiveness of each component underlying the EHC heuristic. (C) 2016 Elsevier B.V. All rights reserved.
关键词Local search Weighted partial maximum satisfiability Emphasis on hard clauses
DOI10.1016/j.artint.2016.11.001
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2016YFB0200803] ; National Key Research and Development Program of China[2016YFC1401700] ; Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing[2016A06] ; National Natural Science Foundation of China[61502464] ; National Natural Science Foundation of China[61572234] ; National Natural Science Foundation of China[61472369] ; National Natural Science Foundation of China[61370072] ; Australian Research Council[DP150101618]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000392038100002
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:56[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7675
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cai, Shaowei
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.State Key Lab Math Engn & Adv Comp, Wuxi 214125, Peoples R China
3.Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing 100190, Peoples R China
4.Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Guangdong, Peoples R China
5.Griffith Univ, Inst Integrated & Intelligent Syst, Brisbane, Qld 4111, Australia
6.MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
推荐引用方式
GB/T 7714
Luo, Chuan,Cai, Shaowei,Su, Kaile,et al. CCEHC: An efficient local search algorithm for weighted partial maximum satisfiability[J]. ARTIFICIAL INTELLIGENCE,2017,243:26-44.
APA Luo, Chuan,Cai, Shaowei,Su, Kaile,&Huang, Wenxuan.(2017).CCEHC: An efficient local search algorithm for weighted partial maximum satisfiability.ARTIFICIAL INTELLIGENCE,243,26-44.
MLA Luo, Chuan,et al."CCEHC: An efficient local search algorithm for weighted partial maximum satisfiability".ARTIFICIAL INTELLIGENCE 243(2017):26-44.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Luo, Chuan]的文章
[Cai, Shaowei]的文章
[Su, Kaile]的文章
百度学术
百度学术中相似的文章
[Luo, Chuan]的文章
[Cai, Shaowei]的文章
[Su, Kaile]的文章
必应学术
必应学术中相似的文章
[Luo, Chuan]的文章
[Cai, Shaowei]的文章
[Su, Kaile]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。