CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Kernelized product quantization
Liu, Jie1,2; Zhang, Yichao1; Zhou, Jianshe2; Shi, Jinsheng2; Zhang, Yongdong3
2017-04-26
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号235页码:15-26
摘要There has been increasing interest in learning compact binary codes for large-scale image data representation and retrieval. In most existing hashing-based methods, high-dimensional vectors are hashed into Hamming space, and the similarity between two vectors is approximated by the Hamming distance between their binary codes. Although hashing-based binary codes generation methods were widely used, Product Quantization (PQ) has been shown to be more accurate than various hashing-based methods, largely due to its lower quantization distortions and more precise distance computation. However, it is still a challenging problem to generalize PQ to accommodate arbitrary kernels. In this paper, we demonstrate how to employ arbitrary kernel functions in a PQ scheme. First, we propose a Kernelized PQ (KPQ) method based on composite kernels, which serves as a basic framework by making the decomposition of implicit feature space possible. Furthermore, we propose a Kernelized Optimized PQ (KOPQ) method to generalize Optimized Product Quantization (OPQ) to an arbitrary implicit feature space. Finally, we propose a Supervised KPQ (SKPQ) to improve the performance of semantic neighbor search. Both methods are variations of KPQ with the incorporation of their corresponding core techniques, KPCA and KCCA respectively, to the basic KPQ framework. Experiments involving three notable datasets show that KPQ, KOPQ and SKPQ can outperform the state-of-the-art methods for a similarity search in feature space or semantic search.
关键词High-dimensional similarity search Compact binary coding Product quantization Composite kernel
DOI10.1016/j.neucom.2016.12.016
收录类别SCI
语种英语
资助项目National Nature Science Foundation of China[61525206] ; National Nature Science Foundation of China[61371194] ; National Nature Science Foundation of China[61672361] ; National Nature Science Foundation of China[61428207] ; National High Technology Research and Development Program of China[2014AA015202] ; Beijing Advanced Innovation Center for Imaging Technology[BAICIT-2016009] ; Beijing Natural Science Foundation[4152012]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000395219700003
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7403
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhou, Jianshe
作者单位1.Capital Normal Univ, Coll Informat & Engn, Beijing 100048, Peoples R China
2.Capital Normal Univ, Beijing Adv Innovat Ctr Imaging Technol, Beijing 100048, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liu, Jie,Zhang, Yichao,Zhou, Jianshe,et al. Kernelized product quantization[J]. NEUROCOMPUTING,2017,235:15-26.
APA Liu, Jie,Zhang, Yichao,Zhou, Jianshe,Shi, Jinsheng,&Zhang, Yongdong.(2017).Kernelized product quantization.NEUROCOMPUTING,235,15-26.
MLA Liu, Jie,et al."Kernelized product quantization".NEUROCOMPUTING 235(2017):15-26.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Jie]的文章
[Zhang, Yichao]的文章
[Zhou, Jianshe]的文章
百度学术
百度学术中相似的文章
[Liu, Jie]的文章
[Zhang, Yichao]的文章
[Zhou, Jianshe]的文章
必应学术
必应学术中相似的文章
[Liu, Jie]的文章
[Zhang, Yichao]的文章
[Zhou, Jianshe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。