CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Improving prediction of burial state of residues by exploiting correlation among residues
Gong, Hai'e1,2; Zhang, Haicang1,2; Zhu, Jianwei1,2; Wang, Chao1,2; Sun, Shiwei1; Zheng, Wei-Mou3; Bu, Dongbo1
2017-03-14
发表期刊BMC BIOINFORMATICS
ISSN1471-2105
卷号18页码:11
摘要Background: Residues in a protein might be buried inside or exposed to the solvent surrounding the protein. The buried residues usually form hydrophobic cores to maintain the structural integrity of proteins while the exposed residues are tightly related to protein functions. Thus, the accurate prediction of solvent accessibility of residues will greatly facilitate our understanding of both structure and functionalities of proteins. Most of the state-of-the-art prediction approaches consider the burial state of each residue independently, thus neglecting the correlations among residues. Results: In this study, we present a high-order conditional random field model that considers burial states of all residues in a protein simultaneously. Our approach exploits not only the correlation among adjacent residues but also the correlation among long-range residues. Experimental results showed that by exploiting the correlation among residues, our approach outperformed the state-of-the-art approaches in prediction accuracy. In-depth case studies also showed that by using the high-order statistical model, the errors committed by the bidirectional recurrent neural network and chain conditional random field models were successfully corrected. Conclusions: Our methods enable the accurate prediction of residue burial states, which should greatly facilitate protein structure prediction and evaluation.
关键词Protein structure Burial states of residue Conditional random field Residue correlation
DOI10.1186/s12859-017-1475-5
收录类别SCI
语种英语
资助项目National Basic Research Program of China[2012CB316502] ; National Natural Science Foundation of China[11175224] ; National Natural Science Foundation of China[11121403] ; National Natural Science Foundation of China[31270834] ; National Natural Science Foundation of China[61272318] ; National Natural Science Foundation of China[31671369]
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Mathematical & Computational Biology
WOS类目Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Mathematical & Computational Biology
WOS记录号WOS:000397505300002
出版者BIOMED CENTRAL LTD
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7322
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zheng, Wei-Mou; Bu, Dongbo
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Gong, Hai'e,Zhang, Haicang,Zhu, Jianwei,et al. Improving prediction of burial state of residues by exploiting correlation among residues[J]. BMC BIOINFORMATICS,2017,18:11.
APA Gong, Hai'e.,Zhang, Haicang.,Zhu, Jianwei.,Wang, Chao.,Sun, Shiwei.,...&Bu, Dongbo.(2017).Improving prediction of burial state of residues by exploiting correlation among residues.BMC BIOINFORMATICS,18,11.
MLA Gong, Hai'e,et al."Improving prediction of burial state of residues by exploiting correlation among residues".BMC BIOINFORMATICS 18(2017):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gong, Hai'e]的文章
[Zhang, Haicang]的文章
[Zhu, Jianwei]的文章
百度学术
百度学术中相似的文章
[Gong, Hai'e]的文章
[Zhang, Haicang]的文章
[Zhu, Jianwei]的文章
必应学术
必应学术中相似的文章
[Gong, Hai'e]的文章
[Zhang, Haicang]的文章
[Zhu, Jianwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。