CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Understanding Big Data Analytics Workloads on Modern Processors
Jia, Zhen1,2; Zhan, Jianfeng1,2; Wang, Lei1,2; Luo, Chunjie1,2; Gao, Wanling1,2; Jin, Yi3; Han, Rui1,2; Zhang, Lixin1,2
2017-06-01
发表期刊IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
ISSN1045-9219
卷号28期号:6页码:1797-1810
摘要Big data analytics workloads are very significant ones in modern data centers, and it is more and more important to characterize their representative workloads and understand their behaviors so as to improve the performance of data center computer systems. In this paper, we embark on a comprehensive study to understand the impacts and performance implications of the big data analytics workloads on the systems equipped with modern superscalar out-of-order processors. After investigating three most important application domains in Internet services in terms of page views and daily visitors, we choose 11 representative data analytics workloads and characterize their micro-architectural behaviors by using hardware performance counters. Our study reveals that the big data analytics workloads share many inherent characteristics, which place them in a different class from the traditional workloads and the scale-out services. To further understand the characteristics of big data analytics workloads, we perform correlation analysis to identify the most key factors that affect cycles per instruction (CPI). Also, we reveal that the increasing complexity of the big data software stacks will put higher pressures on the modern processor pipelines.
关键词Big data analytics workload characterization micro-architectural characteristics performance optimization
DOI10.1109/TPDS.2016.2625244
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2016YFB1000600] ; National Key Research and Development Program of China[2016YFB1000601]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000401365300020
出版者IEEE COMPUTER SOC
引用统计
被引频次:19[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7170
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jia, Zhen
作者单位1.Chinese Acad Sci, ICT, State Key Lab Comp Architecture, Beijing 100049, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Beijing Acad Sci & Technol, Beijing Comp Ctr, Beijing 100089, Peoples R China
推荐引用方式
GB/T 7714
Jia, Zhen,Zhan, Jianfeng,Wang, Lei,et al. Understanding Big Data Analytics Workloads on Modern Processors[J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,2017,28(6):1797-1810.
APA Jia, Zhen.,Zhan, Jianfeng.,Wang, Lei.,Luo, Chunjie.,Gao, Wanling.,...&Zhang, Lixin.(2017).Understanding Big Data Analytics Workloads on Modern Processors.IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,28(6),1797-1810.
MLA Jia, Zhen,et al."Understanding Big Data Analytics Workloads on Modern Processors".IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 28.6(2017):1797-1810.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jia, Zhen]的文章
[Zhan, Jianfeng]的文章
[Wang, Lei]的文章
百度学术
百度学术中相似的文章
[Jia, Zhen]的文章
[Zhan, Jianfeng]的文章
[Wang, Lei]的文章
必应学术
必应学术中相似的文章
[Jia, Zhen]的文章
[Zhan, Jianfeng]的文章
[Wang, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。