CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Representation learning via Dual-Autoencoder for recommendation
Zhuang, Fuzhen1; Zhang, Zhiqiang2; Qian, Mingda1; Shi, Chuan2; Xie, Xing3; He, Qing1
2017-06-01
发表期刊NEURAL NETWORKS
ISSN0893-6080
卷号90页码:83-89
摘要Recommendation has provoked vast amount of attention and research in recent decades. Most previous works employ matrix factorization techniques to learn the latent factors of users and items. And many subsequent works consider external information, e.g., social relationships of users and items' attributions, to improve the recommendation performance under the matrix factorization framework. However, matrix factorization methods may not make full use of the limited information from rating or check-in matrices, and achieve unsatisfying results. Recently, deep learning has proven able to learn good representation in natural language processing, image classification, and so on. Along this line, we propose a new representation learning framework called Recommendation via Dual-Autoencoder (ReDa). In this framework, we simultaneously learn the new hidden representations of users and items using autoencoders, and minimize the deviations of training data by the learnt representations of users and items. Based on this framework, we develop a gradient descent method to learn hidden representations. Extensive experiments conducted on several real-world data sets demonstrate the effectiveness of our proposed method compared with state-of-the-art matrix factorization based methods. (C) 2017 Elsevier Ltd. All rights reserved.
关键词Matrix factorization Dual-Autoencoder Recommendation Representation learning
DOI10.1016/j.neunet.2017.03.009
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61473273] ; National Natural Science Foundation of China[91546122] ; National Natural Science Foundation of China[61573335] ; National Natural Science Foundation of China[61602438] ; Guangdong provincial science and technology plan projects[2015 B010109005] ; Youth Innovation Promotion Association CAS[2017146] ; Microsoft Research Asia Collaborative Research Program
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000402354900008
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:74[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7131
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhuang, Fuzhen
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Beijing Univ Posts & Telecommun, Beijing, Peoples R China
3.Microsoft Res, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhuang, Fuzhen,Zhang, Zhiqiang,Qian, Mingda,et al. Representation learning via Dual-Autoencoder for recommendation[J]. NEURAL NETWORKS,2017,90:83-89.
APA Zhuang, Fuzhen,Zhang, Zhiqiang,Qian, Mingda,Shi, Chuan,Xie, Xing,&He, Qing.(2017).Representation learning via Dual-Autoencoder for recommendation.NEURAL NETWORKS,90,83-89.
MLA Zhuang, Fuzhen,et al."Representation learning via Dual-Autoencoder for recommendation".NEURAL NETWORKS 90(2017):83-89.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhuang, Fuzhen]的文章
[Zhang, Zhiqiang]的文章
[Qian, Mingda]的文章
百度学术
百度学术中相似的文章
[Zhuang, Fuzhen]的文章
[Zhang, Zhiqiang]的文章
[Qian, Mingda]的文章
必应学术
必应学术中相似的文章
[Zhuang, Fuzhen]的文章
[Zhang, Zhiqiang]的文章
[Qian, Mingda]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。