Institute of Computing Technology, Chinese Academy IR
Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets | |
Wang, Wen1,2; Wang, Ruiping1,2; Huang, Zhiwu3; Shan, Shiguang1,4; Chen, Xilin1,2 | |
2018 | |
发表期刊 | IEEE TRANSACTIONS ON IMAGE PROCESSING |
ISSN | 1057-7149 |
卷号 | 27期号:1页码:151-163 |
摘要 | To address the problem of face recognition with image sets, we aim to capture the underlying data distribution in each set and thus facilitate more robust classification. To this end, we represent image set as the Gaussian mixture model (GMM) comprising a number of Gaussian components with prior probabilities and seek to discriminate Gaussian components from different classes. Since in the light of information geometry, the Gaussians lie on a specific Riemannian manifold, this paper presents a method named discriminant analysis on Riemannian manifold of Gaussian distributions (DARG). We investigate several distance metrics between Gaussians and accordingly two discriminative learning frameworks are presented to meet the geometric and statistical characteristics of the specific manifold. The first framework derives a series of provably positive definite probabilistic kernels to embed the manifold to a high-dimensional Hilbert space, where conventional discriminant analysis methods developed in Euclidean space can be applied, and a weighted Kernel discriminant analysis is devised which learns discriminative representation of the Gaussian components in GMMs with their prior probabilities as sample weights. Alternatively, the other framework extends the classical graph embedding method to the manifold by utilizing the distance metrics between Gaussians to construct the adjacency graph, and hence the original manifold is embedded to a lower-dimensional and discriminative target manifold with the geometric structure preserved and the interclass separability maximized. The proposed method is evaluated by face identification and verification tasks on four most challenging and largest databases, YouTube Celebrities, COX, YouTube Face DB, and Point-and-Shoot Challenge, to demonstrate its superiority over the state-of-the-art. |
关键词 | Statistical manifold kernel discriminative learning graph embedding gaussian distribution |
DOI | 10.1109/TIP.2017.2746993 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Natural Science Foundation of China[61390511] ; Natural Science Foundation of China[61379083] ; Natural Science Foundation of China[61650202] ; Natural Science Foundation of China[61672496] ; 973 Program[2015CB351802] ; Youth Innovation Promotion Association, CAS[2015085] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000413256300011 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/6882 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Wang, Ruiping |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Swiss Fed Inst Technol, Comp Vis Lab, CH-8092 Zurich, Switzerland 4.CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai 200031, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Wen,Wang, Ruiping,Huang, Zhiwu,et al. Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2018,27(1):151-163. |
APA | Wang, Wen,Wang, Ruiping,Huang, Zhiwu,Shan, Shiguang,&Chen, Xilin.(2018).Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets.IEEE TRANSACTIONS ON IMAGE PROCESSING,27(1),151-163. |
MLA | Wang, Wen,et al."Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets".IEEE TRANSACTIONS ON IMAGE PROCESSING 27.1(2018):151-163. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论