CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Geometric Hypergraph Learning for Visual Tracking
Du, Dawei1,2; Qi, Honggang1,2; Wen, Longyin3,4; Tian, Qi5; Huang, Qingming1,2,6; Lyu, Siwei7
2017-12-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
ISSN2168-2267
卷号47期号:12页码:4182-4195
摘要Graph-based representation is widely used in visual tracking field by finding correct correspondences between target parts in different frames. However, most graph-based trackers consider pairwise geometric relations between local parts. They do not make full use of the target's intrinsic structure, thereby making the representation easily disturbed by errors in pairwise affinities when large deformation or occlusion occurs. In this paper, we propose a geometric hypergraph learning-based tracking method, which fully exploits high-order geometric relations among multiple correspondences of parts in different frames. Then visual tracking is formulated as the mode-seeking problem on the hypergraph in which vertices represent correspondence hypotheses and hyperedges describe high-order geometric relations among correspondences. Besides, a confidence-aware sampling method is developed to select representative vertices and hyperedges to construct the geometric hypergraph for more robustness and scalability. The experiments are carried out on three challenging datasets (VOT2014, OTB100, and Deform-SOT) to demonstrate that our method performs favorably against other existing trackers.
关键词Confidence-aware sampling correspondence hypotheses deformation geometric hypergraph learning mode-seeking occlusion visual tracking
DOI10.1109/TCYB.2016.2626275
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[61472388] ; National Natural Science Foundation of China[61429201] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013] ; ARO[W911NF-15-1-0290] ; Faculty Research Gift Awards by NEC Laboratories of America ; U.S. National Science Foundation Research Grant through Division of Computing and Communication Foundations[1319800] ; Blippar
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000415727200015
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:30[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/6496
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Qi, Honggang; Huang, Qingming
作者单位1.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 101408, Peoples R China
3.SUNY Albany, Albany, NY 12222 USA
4.GE Global Res, Niskayuna, NY 12309 USA
5.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
6.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
7.SUNY Albany, Dept Comp Sci, Albany, NY 12222 USA
推荐引用方式
GB/T 7714
Du, Dawei,Qi, Honggang,Wen, Longyin,et al. Geometric Hypergraph Learning for Visual Tracking[J]. IEEE TRANSACTIONS ON CYBERNETICS,2017,47(12):4182-4195.
APA Du, Dawei,Qi, Honggang,Wen, Longyin,Tian, Qi,Huang, Qingming,&Lyu, Siwei.(2017).Geometric Hypergraph Learning for Visual Tracking.IEEE TRANSACTIONS ON CYBERNETICS,47(12),4182-4195.
MLA Du, Dawei,et al."Geometric Hypergraph Learning for Visual Tracking".IEEE TRANSACTIONS ON CYBERNETICS 47.12(2017):4182-4195.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Du, Dawei]的文章
[Qi, Honggang]的文章
[Wen, Longyin]的文章
百度学术
百度学术中相似的文章
[Du, Dawei]的文章
[Qi, Honggang]的文章
[Wen, Longyin]的文章
必应学术
必应学术中相似的文章
[Du, Dawei]的文章
[Qi, Honggang]的文章
[Wen, Longyin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。