Institute of Computing Technology, Chinese Academy IR
Geometric Hypergraph Learning for Visual Tracking | |
Du, Dawei1,2; Qi, Honggang1,2; Wen, Longyin3,4; Tian, Qi5; Huang, Qingming1,2,6; Lyu, Siwei7 | |
2017-12-01 | |
发表期刊 | IEEE TRANSACTIONS ON CYBERNETICS |
ISSN | 2168-2267 |
卷号 | 47期号:12页码:4182-4195 |
摘要 | Graph-based representation is widely used in visual tracking field by finding correct correspondences between target parts in different frames. However, most graph-based trackers consider pairwise geometric relations between local parts. They do not make full use of the target's intrinsic structure, thereby making the representation easily disturbed by errors in pairwise affinities when large deformation or occlusion occurs. In this paper, we propose a geometric hypergraph learning-based tracking method, which fully exploits high-order geometric relations among multiple correspondences of parts in different frames. Then visual tracking is formulated as the mode-seeking problem on the hypergraph in which vertices represent correspondence hypotheses and hyperedges describe high-order geometric relations among correspondences. Besides, a confidence-aware sampling method is developed to select representative vertices and hyperedges to construct the geometric hypergraph for more robustness and scalability. The experiments are carried out on three challenging datasets (VOT2014, OTB100, and Deform-SOT) to demonstrate that our method performs favorably against other existing trackers. |
关键词 | Confidence-aware sampling correspondence hypotheses deformation geometric hypergraph learning mode-seeking occlusion visual tracking |
DOI | 10.1109/TCYB.2016.2626275 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[61472388] ; National Natural Science Foundation of China[61429201] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013] ; ARO[W911NF-15-1-0290] ; Faculty Research Gift Awards by NEC Laboratories of America ; U.S. National Science Foundation Research Grant through Division of Computing and Communication Foundations[1319800] ; Blippar |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Cybernetics |
WOS记录号 | WOS:000415727200015 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/6496 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Qi, Honggang; Huang, Qingming |
作者单位 | 1.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 101408, Peoples R China 3.SUNY Albany, Albany, NY 12222 USA 4.GE Global Res, Niskayuna, NY 12309 USA 5.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA 6.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 7.SUNY Albany, Dept Comp Sci, Albany, NY 12222 USA |
推荐引用方式 GB/T 7714 | Du, Dawei,Qi, Honggang,Wen, Longyin,et al. Geometric Hypergraph Learning for Visual Tracking[J]. IEEE TRANSACTIONS ON CYBERNETICS,2017,47(12):4182-4195. |
APA | Du, Dawei,Qi, Honggang,Wen, Longyin,Tian, Qi,Huang, Qingming,&Lyu, Siwei.(2017).Geometric Hypergraph Learning for Visual Tracking.IEEE TRANSACTIONS ON CYBERNETICS,47(12),4182-4195. |
MLA | Du, Dawei,et al."Geometric Hypergraph Learning for Visual Tracking".IEEE TRANSACTIONS ON CYBERNETICS 47.12(2017):4182-4195. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论