CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Sparse Online Learning of Image Similarity
Gao, Xingyu1,3; Hoi, Steven C. H.2; Zhang, Yongdong3; Zhou, Jianshe4; Wan, Ji3; Chen, Zhenyu5; Li, Jintao3; Zhu, Jianke6
2017-09-01
发表期刊ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY
ISSN2157-6904
卷号8期号:5页码:22
摘要Learning image similarity plays a critical role in real-world multimedia information retrieval applications, especially in Content-Based Image Retrieval (CBIR) tasks, in which an accurate retrieval of visually similar objects largely relies on an effective image similarity function. Crafting a good similarity function is very challenging because visual contents of images are often represented as feature vectors in high-dimensional spaces, for example, via bag-of-words (BoW) representations, and traditional rigid similarity functions, for example, cosine similarity, are often suboptimal for CBIR tasks. In this article, we address this fundamental problem, that is, learning to optimize image similarity with sparse and high-dimensional representations from large-scale training data, and propose a novel scheme of Sparse Online Learning of Image Similarity (SOLIS). In contrast to many existing image-similarity learning algorithms that are designed to work with low-dimensional data, SOLIS is able to learn image similarity from large-scale image data in sparse and high-dimensional spaces. Our encouraging results showed that the proposed new technique achieves highly competitive accuracy as compared to the state-of-the-art approaches but enjoys significant advantages in computational efficiency, model sparsity, and retrieval scalability, making it more practical for real-world multimedia retrieval applications.
关键词Online learning metric learning similarity learning distance metric bag-of-words representation image retrieval
DOI10.1145/3065950
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2016YFB0800403] ; National Nature Science Foundation of China[61525206] ; National Nature Science Foundation of China[61572472] ; National Nature Science Foundation of China[61428207] ; Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 1 Grant ; Beijing Natural Science Foundation[4152050] ; Beijing Advanced Innovation Center for Imaging Technology[BAICIT-2016009]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:000414318500003
出版者ASSOC COMPUTING MACHINERY
引用统计
被引频次:16[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/6468
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Hoi, Steven C. H.; Zhang, Yongdong
作者单位1.Chinese Acad Sci, Inst Software, Lab Parallel Software & Computat Sci, Beijing 100190, Peoples R China
2.Singapore Management Univ, Sch Informat Syst, Singapore 188065, Singapore
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
4.Capital Normal Univ, Beijing Adv Innovat Ctr Imaging Technol, Beijing 100048, Peoples R China
5.Chinese Acad Sci, China Elect Power Res Inst, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100192, Peoples R China
6.Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310058, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Gao, Xingyu,Hoi, Steven C. H.,Zhang, Yongdong,et al. Sparse Online Learning of Image Similarity[J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,2017,8(5):22.
APA Gao, Xingyu.,Hoi, Steven C. H..,Zhang, Yongdong.,Zhou, Jianshe.,Wan, Ji.,...&Zhu, Jianke.(2017).Sparse Online Learning of Image Similarity.ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,8(5),22.
MLA Gao, Xingyu,et al."Sparse Online Learning of Image Similarity".ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 8.5(2017):22.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Xingyu]的文章
[Hoi, Steven C. H.]的文章
[Zhang, Yongdong]的文章
百度学术
百度学术中相似的文章
[Gao, Xingyu]的文章
[Hoi, Steven C. H.]的文章
[Zhang, Yongdong]的文章
必应学术
必应学术中相似的文章
[Gao, Xingyu]的文章
[Hoi, Steven C. H.]的文章
[Zhang, Yongdong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。