Institute of Computing Technology, Chinese Academy IR
Parametric local multiview hamming distance metric learning | |
Zhai, Deming1; Liu, Xianming1; Chang, Hong2; Zhen, Yi3; Chen, Xilin2; Guo, Maozu4; Gao, Wen1,5 | |
2018-03-01 | |
发表期刊 | PATTERN RECOGNITION |
ISSN | 0031-3203 |
卷号 | 75页码:250-262 |
摘要 | Learning an appropriate distance metric is a crucial problem in pattern recognition. To confront with the scalability issue of massive data, hamming distance on binary codes is advocated since it permits exact sub-linear kNN search and meanwhile shares the advantage of efficient storage. In this paper, we study hamming metric learning in the context of multimodal data for cross-view similarity search. We present a new method called Parametric Local Multiview Hamming metric (PLMH), which learns multiview metric based on a set of local hash functions to locally adapt to the data structure of each modality. To balance locality and computational efficiency, the hash projection matrix of each instance is parameterized, with guaranteed approximation error bound, as a linear combination of basis hash projections associated with a small set of anchor points. The weak-supervisory information (side information) provided by pair wise and triplet constraints are incorporated in a coherent way to achieve semantically effective hash codes. A local optimal conjugate gradient algorithm with orthogonal rotations is designed to learn the hash functions for each bit, and the overall hash codes are learned in a sequential manner to progressively minimize the bias. Experimental evaluations on cross-media retrieval tasks demonstrate that PLMH performs competitively against the state-of-the-art methods. (C) 2017 Elsevier Ltd. All rights reserved. |
关键词 | Metric learning Hamming distance Hash function learning |
DOI | 10.1016/j.patcog.2017.06.018 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Natural Science Foundation of China[61502122] ; Natural Science Foundation of China[61672193] ; Natural Science Foundation of China[61671188] ; Natural Science Foundation of China[61571164] ; Fundamental Research Funds for the Central Universities[HIT.NSRIF.201653] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000418971900023 |
出版者 | ELSEVIER SCI LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/6321 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Liu, Xianming |
作者单位 | 1.Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100080, Peoples R China 3.Georgia Inst Technol, Coll Comp, Atlanta, GA 30313 USA 4.Beijing Univ Civil Engn & Architecture, Sch Elect & Informat Engn, Beijing 100044, Peoples R China 5.Peking Univ, Sch Elect Engn & Comp Sci, Natl Engn Lab Video Technol, Beijing 100871, Peoples R China |
推荐引用方式 GB/T 7714 | Zhai, Deming,Liu, Xianming,Chang, Hong,et al. Parametric local multiview hamming distance metric learning[J]. PATTERN RECOGNITION,2018,75:250-262. |
APA | Zhai, Deming.,Liu, Xianming.,Chang, Hong.,Zhen, Yi.,Chen, Xilin.,...&Gao, Wen.(2018).Parametric local multiview hamming distance metric learning.PATTERN RECOGNITION,75,250-262. |
MLA | Zhai, Deming,et al."Parametric local multiview hamming distance metric learning".PATTERN RECOGNITION 75(2018):250-262. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论