CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A two-step approach to describing web topics via probable keywords and prototype images from background-removed similarities
Pang, Junbiao1; Tao, Fei2; Li, Liang3; Huang, Qingming2,3; Yin, Baocai1,4; Tian, Qi5
2018-01-31
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号275页码:478-487
摘要To quickly grasp what interesting topics are happening on web, it is challenge to discover and describe topics from User-Generated Content (UGC) data. Describing topics by probable keywords and prototype images is an efficient human-machine interaction to help person quickly grasp a topic. However, except for the challenges from web topic detection, mining the multi-media description is a challenge task that the conventional approaches can barely handle: (1) noises from non-informative short texts or images due to less-constrained UGC; and (2) even for these informative images, the gaps between visual concepts and social ones. This paper addresses above challenges from the perspective of background similarity remove, and proposes a two-step approach to mining the multi-media description from noisy data. First, we utilize a devcovolution model to strip the similarities among non-informative words/images during web topic detection. Second, the background-removed similarities are reconstructed to identify the probable keywords and prototype images during topic description. By removing background similarities, we can generate coherent and informative multi-media description for a topic. Experiments show that the proposed method produces a high quality description on two public datasets. (C) 2017 Elsevier B.V. All rights reserved.
关键词Topic description Poisson deconvolution User-Generated Content Topic detection Background similarity Multi-modal description
DOI10.1016/j.neucom.2017.08.057
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[61332016] ; Natural Science Foundation of China[61672069] ; Natural Science Foundation of China[61472387] ; Natural Science Foundation of China[61620106009] ; Natural Science Foundation of China[U1636214] ; Natural Science Foundation of China[61429201] ; Natural Science Foundation of China[61650202] ; Beijing Post-Doctoral Research Foundation ; Beijing Municipal Commission of Education[KM201610005034] ; Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR) ; ARO[W911NF-15-1-0290] ; NEC Laboratory of Blippar ; NEC Laboratory of America
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000418370200047
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/6283
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Liang
作者单位1.Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, 100 Pingleyuan Rd, Beijing 100124, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp & Control Engn, 19 Yuquan Rd, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, 6 Kexueyuan South Rd, Beijing 100190, Peoples R China
4.Dalian Univ Technol, 2 Linggong Rd, Dalian 116024, Peoples R China
5.Univ Texas San Antonio, Dept Comp Sci, One UTSA Circle, San Antonio, TX 78249 USA
推荐引用方式
GB/T 7714
Pang, Junbiao,Tao, Fei,Li, Liang,et al. A two-step approach to describing web topics via probable keywords and prototype images from background-removed similarities[J]. NEUROCOMPUTING,2018,275:478-487.
APA Pang, Junbiao,Tao, Fei,Li, Liang,Huang, Qingming,Yin, Baocai,&Tian, Qi.(2018).A two-step approach to describing web topics via probable keywords and prototype images from background-removed similarities.NEUROCOMPUTING,275,478-487.
MLA Pang, Junbiao,et al."A two-step approach to describing web topics via probable keywords and prototype images from background-removed similarities".NEUROCOMPUTING 275(2018):478-487.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pang, Junbiao]的文章
[Tao, Fei]的文章
[Li, Liang]的文章
百度学术
百度学术中相似的文章
[Pang, Junbiao]的文章
[Tao, Fei]的文章
[Li, Liang]的文章
必应学术
必应学术中相似的文章
[Pang, Junbiao]的文章
[Tao, Fei]的文章
[Li, Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。