CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Pervasive Approach to EEG-Based Depression Detection
Cai, Hanshu1; Han, Jiashuo1; Chen, Yunfei1; Sha, Xiaocong1; Wang, Ziyang1; Hu, Bin1,2,3; Yang, Jing4; Feng, Lei5; Ding, Zhijie6; Chen, Yiqiang7; Gutknecht, Jurg8
2018
发表期刊COMPLEXITY
ISSN1076-2787
页码13
摘要Nowadays, depression is the world's major health concern and economic burden worldwide. However, due to the limitations of current methods for depression diagnosis, a pervasive and objective approach is essential. In the present study, a psychophysiological database, containing 213 (92 depressed patients and 121 normal controls) subjects, was constructed. The electroencephalogram (EEG) signals of all participants under resting state and sound stimulation were collected using a pervasive prefrontal-lobe three-electrode EEG system at Fp1, Fp2, and Fpz electrode sites. After denoising using the Finite Impulse Response filter combining the Kalman derivation formula, Discrete Wavelet Transformation, and an Adaptive Predictor Filter, a total of 270 linear and nonlinear features were extracted. Then, the minimal-redundancy-maximal-relevance feature selection technique reduced the dimensionality of the feature space. Four classification methods (Support Vector Machine, K-Nearest Neighbor, Classification Trees, and Artificial Neural Network) distinguished the depressed participants from normal controls. The classifiers' performances were evaluated using 10-fold cross-validation. The results showed that K-Nearest Neighbor (KNN) had the highest accuracy of 79.27%. The result also suggested that the absolute power of the theta wave might be a valid characteristic for discriminating depression. This study proves the feasibility of a pervasive three-electrode EEG acquisition system for depression diagnosis.
DOI10.1155/2018/5238028
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973 Program)[2014CB744600] ; National Natural Science Foundation of China[61210010] ; National Natural Science Foundation of China[61632014] ; MOST[2013DFA11140]
WOS研究方向Mathematics ; Science & Technology - Other Topics
WOS类目Mathematics, Interdisciplinary Applications ; Multidisciplinary Sciences
WOS记录号WOS:000425404200001
出版者WILEY-HINDAWI
引用统计
被引频次:149[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/6119
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Hu, Bin
作者单位1.Lanzhou Univ, Sch Informat Sci & Engn, Gansu Prov Key Lab Wearable Comp, Lanzhou, Gansu, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Biol Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai, Peoples R China
3.Capital Med Univ, Beijing Inst Brain Disorders, Beijing, Peoples R China
4.Lanzhou Univ, Hosp 2, Dept Child Psychol, Lanzhou, Gansu, Peoples R China
5.Capital Med Univ, Beijing Anding Hosp, Beijing, Peoples R China
6.Third Peoples Hosp Tianshui City, Tianshui, Peoples R China
7.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
8.ETH, Comp Syst Inst, Zurich, Switzerland
推荐引用方式
GB/T 7714
Cai, Hanshu,Han, Jiashuo,Chen, Yunfei,et al. A Pervasive Approach to EEG-Based Depression Detection[J]. COMPLEXITY,2018:13.
APA Cai, Hanshu.,Han, Jiashuo.,Chen, Yunfei.,Sha, Xiaocong.,Wang, Ziyang.,...&Gutknecht, Jurg.(2018).A Pervasive Approach to EEG-Based Depression Detection.COMPLEXITY,13.
MLA Cai, Hanshu,et al."A Pervasive Approach to EEG-Based Depression Detection".COMPLEXITY (2018):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cai, Hanshu]的文章
[Han, Jiashuo]的文章
[Chen, Yunfei]的文章
百度学术
百度学术中相似的文章
[Cai, Hanshu]的文章
[Han, Jiashuo]的文章
[Chen, Yunfei]的文章
必应学术
必应学术中相似的文章
[Cai, Hanshu]的文章
[Han, Jiashuo]的文章
[Chen, Yunfei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。