CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Implicit Negative Sub-Categorization and Sink Diversion for Object Detection
Li, Yu1,2; Tang, Sheng1,2; Lin, Min3; Zhang, Yongdong1,2; Li, Jintao1,2; Yan, Shuicheng3
2018-04-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号27期号:4页码:1561-1574
摘要In this paper, we focus on improving the proposal classification stage in the object detection task and present implicit negative sub-categorization and sink diversion to lift the performance by strengthening loss function in this stage. First, based on the observation that the "background" class is generally very diverse and thus challenging to be handled as a single indiscriminative class in existing state-of-the-art methods, we propose to divide the background category into multiple implicit sub-categories to explicitly differentiate diverse patterns within it. Second, since the ground truth class inevitably has low-value probability scores for certain images, we propose to add a "sink" class and divert the probabilities of wrong classes to this class when necessary, such that the ground truth label will still have a higher probability than other wrong classes even though it has low probability output. Additionally, we propose to use dilated convolution, which is widely used in the semantic segmentation task, for efficient and valuable context information extraction. Extensive experiments on PASCAL VOC 2007 and 2012 data sets show that our proposed methods based on faster R-CNN implementation can achieve state-of-the-art mAPs, i.e., 84.1%, 82.6%, respectively, and obtain 2.5% improvement on ILSVRC DET compared with that of ResNet.
关键词Object detection convolutional neural network faster R-CNN classification loss context information
DOI10.1109/TIP.2017.2779270
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61525206] ; National Natural Science Foundation of China[61572472] ; National Key Research and Development Program of China[2017YFB1002202] ; Beijing Natural Science Foundation[4152050] ; Key Research Program of CAS[KFZD-SW-407] ; STS Initiative of CAS[KFJ-STS-ZDTP-018]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000429463800001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/5936
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tang, Sheng
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.AI Inst Qihoo 360, Beijing 100025, Peoples R China
推荐引用方式
GB/T 7714
Li, Yu,Tang, Sheng,Lin, Min,et al. Implicit Negative Sub-Categorization and Sink Diversion for Object Detection[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2018,27(4):1561-1574.
APA Li, Yu,Tang, Sheng,Lin, Min,Zhang, Yongdong,Li, Jintao,&Yan, Shuicheng.(2018).Implicit Negative Sub-Categorization and Sink Diversion for Object Detection.IEEE TRANSACTIONS ON IMAGE PROCESSING,27(4),1561-1574.
MLA Li, Yu,et al."Implicit Negative Sub-Categorization and Sink Diversion for Object Detection".IEEE TRANSACTIONS ON IMAGE PROCESSING 27.4(2018):1561-1574.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Yu]的文章
[Tang, Sheng]的文章
[Lin, Min]的文章
百度学术
百度学术中相似的文章
[Li, Yu]的文章
[Tang, Sheng]的文章
[Lin, Min]的文章
必应学术
必应学术中相似的文章
[Li, Yu]的文章
[Tang, Sheng]的文章
[Lin, Min]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。