CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Self-adaptive kernel K-means algorithm based on the shuffled frog leaping algorithm
Fan, Shuyan1; Ding, Shifei1,2; Xue, Yu3
2018-02-01
发表期刊SOFT COMPUTING
ISSN1432-7643
卷号22期号:3页码:861-872
摘要Kernel K-means can handle nonlinearly separate datasets by mapping the input datasets into a high-dimensional feature space. The kernel matrix reflects the inner structure of data, so it is a key to construct an appropriate kernel matrix. However, many kernel-based methods need to be set kernel parameter artificially in advance. It is difficult to set an appropriate kernel parameter for each dataset artificially, which limits the performance of the kernel K-means algorithm to some extent. It is necessary to design a method which can adjust the kernel parameter automatically according to the data structure. In addition, the number of clusters also needs to be set. To overcome these challenges, this paper proposed a self-adaptive kernel K-means based on the shuffled frog leaping algorithm, which regard the kernel parameter and the number of clusters as the position information of the frog. We designed a clustering validity index named Between-Within Proportion suitable for the kernel space (KBWP) by modifying the clustering validity index Between-Within Proportion (BWP). Treat KBWP as fitness in the shuffled frog leaping algorithm, and then do local and global optimization until the max iterations. The kernel parameter and the number of clusters corresponding to the maximum fitness are optimal. We experimentally verify our algorithm on artificial datasets and real datasets. Experimental results demonstrate the effectiveness and good performance of the proposed algorithm.
关键词Kernel K-means Shuffled frog leaping algorithm Clustering validity index Clustering analysis
DOI10.1007/s00500-016-2389-2
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61379101] ; National Natural Science Foundation of China[61672522] ; National Basic Research Program of China[2013CB329502] ; Priority Academic Program Development of Jiangsu Higer Education Institutions (PAPD) ; Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:000423704100014
出版者SPRINGER
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/5611
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ding, Shifei
作者单位1.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100090, Peoples R China
3.Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Fan, Shuyan,Ding, Shifei,Xue, Yu. Self-adaptive kernel K-means algorithm based on the shuffled frog leaping algorithm[J]. SOFT COMPUTING,2018,22(3):861-872.
APA Fan, Shuyan,Ding, Shifei,&Xue, Yu.(2018).Self-adaptive kernel K-means algorithm based on the shuffled frog leaping algorithm.SOFT COMPUTING,22(3),861-872.
MLA Fan, Shuyan,et al."Self-adaptive kernel K-means algorithm based on the shuffled frog leaping algorithm".SOFT COMPUTING 22.3(2018):861-872.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fan, Shuyan]的文章
[Ding, Shifei]的文章
[Xue, Yu]的文章
百度学术
百度学术中相似的文章
[Fan, Shuyan]的文章
[Ding, Shifei]的文章
[Xue, Yu]的文章
必应学术
必应学术中相似的文章
[Fan, Shuyan]的文章
[Ding, Shifei]的文章
[Xue, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。