CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game
Zai, Dawei1; Li, Jonathan1,2; Guo, Yulan3,4; Cheng, Ming1; Huang, Pengdi1; Cao, Xiaofei1; Wang, Cheng1
2017-12-01
发表期刊ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
ISSN0924-2716
卷号134页码:15-29
摘要It is challenging to automatically register TLS point clouds with noise, outliers and varying overlap. In this paper, we propose a new method for pairwise registration of TLS point clouds. We first generate covariance matrix descriptors with an adaptive neighborhood size from point clouds to find candidate correspondences, we then construct a non-cooperative game to isolate mutual compatible correspondences, which are considered as true positives. The method was tested on three models acquired by two different TLS systems. Experimental results demonstrate that our proposed adaptive covariance (ACOV) descriptor is invariant to rigid transformation and robust to noise and varying resolutions. The average registration errors achieved on three models are 0.46 cm, 0.32 cm and 1.73 cm, respectively. The computational times cost on these models are about 288 s, 184 s and 903 s, respectively. Besides, our registration framework using ACOV descriptors and a game theoretic method is superior to the state-of-the-art methods in terms of both registration error and computational time. The experiment on a large outdoor scene further demonstrates the feasibility and effectiveness of our proposed pairwise registration framework. (C) 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
关键词Terrestrial laser scanning (TLS) Registration Covariance matrix descriptor 3D representation Game theory
DOI10.1016/j.isprsjprs.2017.10.001
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[41471379] ; National Natural Science Foundation of China[61471371] ; National Natural Science Foundation of China[61602499] ; Fujian Collaborative Innovation Center for Big Data Applications in Governments ; National Postdoctoral Program for Innovative Talents[BX201600172]
WOS研究方向Physical Geography ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geography, Physical ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000418220800002
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:66[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/5564
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Jonathan
作者单位1.Xiamen Univ, Sch Informat Sci & Engn, Fujian Key Lab Sensing & Comp Smart City, Xiamen, Peoples R China
2.Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON, Canada
3.Natl Univ Def Technol, Coll Elect Sci & Engn, Changsha, Hunan, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zai, Dawei,Li, Jonathan,Guo, Yulan,et al. Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game[J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,2017,134:15-29.
APA Zai, Dawei.,Li, Jonathan.,Guo, Yulan.,Cheng, Ming.,Huang, Pengdi.,...&Wang, Cheng.(2017).Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game.ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,134,15-29.
MLA Zai, Dawei,et al."Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game".ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 134(2017):15-29.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zai, Dawei]的文章
[Li, Jonathan]的文章
[Guo, Yulan]的文章
百度学术
百度学术中相似的文章
[Zai, Dawei]的文章
[Li, Jonathan]的文章
[Guo, Yulan]的文章
必应学术
必应学术中相似的文章
[Zai, Dawei]的文章
[Li, Jonathan]的文章
[Guo, Yulan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。