CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Online selection of the best k-feature subset for object tracking
Li, Guorong1; Huang, Qingming1,2; Pang, Junbiao2; Jiang, Shuqiang2; Qin, Lei2
2012-02-01
发表期刊JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION
ISSN1047-3203
卷号23期号:2页码:254-263
摘要In this paper, we propose a new feature subset evaluation method for feature selection in object tracking. According to the fact that a feature which is useless by itself could become a good one when it is used together with some other features, we propose to evaluate feature subsets as a whole for object tracking instead of scoring each feature individually and find out the most distinguishable subset for tracking. In the paper, we use a special tree to formalize the feature subset space. Then conditional entropy is used to evaluating feature subset and a simple but efficient greedy search algorithm is developed to search this tree to obtain the optimal k-feature subset quickly. Furthermore, our online k-feature subset selection method is integrated into particle filter for robust tracking. Extensive experiments demonstrate that k-feature subset selected by our method is more discriminative and thus can improve tracking performance considerably. (C) 2011 Elsevier Inc. All rights reserved.
关键词Object tracking Feature subset selection Feature selection Feature subset tree Conditional entropy Greedy search algorithm Particle filter Online selection
DOI10.1016/j.jvcir.2011.11.001
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973 Program)[2009CB320906] ; National Natural Science Foundation of China[61025011] ; National Natural Science Foundation of China[61035001] ; National Natural Science Foundation of China[61133003] ; National Natural Science Foundation of China[61003165] ; Beijing Natural Science Foundation[4111003]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering
WOS记录号WOS:000300198900003
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/5380
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Guorong
作者单位1.Chinese Acad Sci, Grad Univ, Beijing 100190, Peoples R China
2.CAS, Inst Comput Tech, Key Lab Intell Info Proc, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Li, Guorong,Huang, Qingming,Pang, Junbiao,et al. Online selection of the best k-feature subset for object tracking[J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION,2012,23(2):254-263.
APA Li, Guorong,Huang, Qingming,Pang, Junbiao,Jiang, Shuqiang,&Qin, Lei.(2012).Online selection of the best k-feature subset for object tracking.JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION,23(2),254-263.
MLA Li, Guorong,et al."Online selection of the best k-feature subset for object tracking".JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION 23.2(2012):254-263.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Guorong]的文章
[Huang, Qingming]的文章
[Pang, Junbiao]的文章
百度学术
百度学术中相似的文章
[Li, Guorong]的文章
[Huang, Qingming]的文章
[Pang, Junbiao]的文章
必应学术
必应学术中相似的文章
[Li, Guorong]的文章
[Huang, Qingming]的文章
[Pang, Junbiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。