Institute of Computing Technology, Chinese Academy IR
Structure-Aware Local Sparse Coding for Visual Tracking | |
Qi, Yuankai1; Qin, Lei2; Zhang, Jian3; Zhang, Shengping4; Huang, Qingming1,5; Yang, Ming-Hsuan6 | |
2018-08-01 | |
发表期刊 | IEEE TRANSACTIONS ON IMAGE PROCESSING |
ISSN | 1057-7149 |
卷号 | 27期号:8页码:3857-3869 |
摘要 | Sparse coding has been applied to visual tracking and related vision problems with demonstrated success in recent years. Existing tracking methods based on local sparse coding sample patches from a target candidate and sparsely encode these using a dictionary consisting of patches sampled from target template images. The discriminative strength of existing methods based on local sparse coding is limited as spatial structure constraints among the template patches are not exploited. To address this problem, we propose a structure-aware local sparse coding algorithm, which encodes a target candidate using templates with both global and local sparsity constraints. For robust tracking, we show the local regions of a candidate region should be encoded only with the corresponding local regions of the target templates that are the most similar from the global view. Thus, a more precise and discriminative sparse representation is obtained to account for appearance changes. To alleviate the issues with tracking drifts, we design an effective template update scheme. Extensive experiments on challenging image sequences demonstrate the effectiveness of the proposed algorithm against numerous state-of-the-art methods. |
关键词 | Visual tracking local sparse coding spatial structure information template update |
DOI | 10.1109/TIP.2018.2797482 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61650202] ; National Natural Science Foundation of China[61572465] ; National Natural Science Foundation of China[61390510] ; National Natural Science Foundation of China[61732007] ; National Natural Science Foundation of China[61672188] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013] ; NSF[1149783] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000431451100002 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/5309 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Huang, Qingming |
作者单位 | 1.Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 3.King Abdullah Univ Sci & Technol, Visual Comp Ctr, Thuwal 239556900, Saudi Arabia 4.Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China 5.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China 6.Univ Calif Merced, Sch Engn, Merced, CA 95344 USA |
推荐引用方式 GB/T 7714 | Qi, Yuankai,Qin, Lei,Zhang, Jian,et al. Structure-Aware Local Sparse Coding for Visual Tracking[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2018,27(8):3857-3869. |
APA | Qi, Yuankai,Qin, Lei,Zhang, Jian,Zhang, Shengping,Huang, Qingming,&Yang, Ming-Hsuan.(2018).Structure-Aware Local Sparse Coding for Visual Tracking.IEEE TRANSACTIONS ON IMAGE PROCESSING,27(8),3857-3869. |
MLA | Qi, Yuankai,et al."Structure-Aware Local Sparse Coding for Visual Tracking".IEEE TRANSACTIONS ON IMAGE PROCESSING 27.8(2018):3857-3869. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论