Institute of Computing Technology, Chinese Academy IR
Object Categorization Using Class-Specific Representations | |
Zhang, Chunjie1,2; Cheng, Jian2,3,4; Li, Liang5; Li, Changsheng6; Tian, Qi7 | |
2018-09-01 | |
发表期刊 | IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
![]() |
ISSN | 2162-237X |
卷号 | 29期号:9页码:4528-4534 |
摘要 | Object categorization refers to the task of automatically classifying objects based on the visual content. Existing approaches simply represent each image with the visual features without considering the specific characters of images within the same class. However, objects of the same class may exhibit unique characters, which should be represented accordingly. In this brief, we propose a novel class-specific representation strategy for object categorization. For each class, we first model the characters of images within the same class using Gaussian mixture model (GMM). We then represent each image by calculating the Euclidean distance and relative Euclidean distance between the image and the GMM model for each class. We concatenate the representations of each class for joint representation. In this way, we can represent an image by not only considering the visual contents but also combining the class-specific characters. Experiments on several public available data sets validate the superiority of the proposed class-specific representation method over well-established algorithms for object category predictions. |
关键词 | Class-specific representation image classification object categorization visual representation |
DOI | 10.1109/TNNLS.2017.2757497 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61303154] ; National Natural Science Foundation of China[61332016] ; Scientific Research Key Program of Beijing Municipal Commission of Education[KZ201610005012] ; ARO[W911NF-15-1-0290] ; NEC Laboratory of America ; National Science Foundation of China[61429201] ; NEC Laboratory of Blippar |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000443083700052 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/5004 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Cheng, Jian |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100049, Peoples R China 4.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing 100049, Peoples R China 5.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100049, Peoples R China 6.Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R China 7.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA |
推荐引用方式 GB/T 7714 | Zhang, Chunjie,Cheng, Jian,Li, Liang,et al. Object Categorization Using Class-Specific Representations[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(9):4528-4534. |
APA | Zhang, Chunjie,Cheng, Jian,Li, Liang,Li, Changsheng,&Tian, Qi.(2018).Object Categorization Using Class-Specific Representations.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(9),4528-4534. |
MLA | Zhang, Chunjie,et al."Object Categorization Using Class-Specific Representations".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.9(2018):4528-4534. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论