CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning sequential features for cascade outbreak prediction
Gou, Chengcheng1,2; Shen, Huawei1,2; Du, Pan1; Wu, Dayong1; Liu, Yue1; Cheng, Xueqi1,2
2018-12-01
发表期刊KNOWLEDGE AND INFORMATION SYSTEMS
ISSN0219-1377
卷号57期号:3页码:721-739
摘要Information cascades are ubiquitous in various online social networks. Outbreak of cascades could cause huge and unexpected effects. Therefore, predicting the outbreak of cascades at early stage is of vital importance to avoid potential bad effects and take relevant actions. Existing methods either adopt regression or classification technique with exhaustive feature engineering or predict cascade dynamics via modeling the stochastic process of cascades using a hard-coded diffusion-reaction function. One salient issue of these methods is that these methods heavily depend on human-defined knowledge, features or functions. In this paper, we propose to use recurrent neural network with long short-term memory to directly learn sequential patterns from information cascades, working in a fully data-driven manner. With the learned sequential patterns, the outbreak of cascade could be accurately predicted. Extensive experiments on both Twitter and Sina Weibo datasets demonstrate that our method significantly outperforms state-of-the-art methods at the prediction of cascade outbreaks.
关键词Social network Outbreak prediction Sequential feature LSTM Popularity prediction
DOI10.1007/s10115-017-1143-0
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973 Program)[2014CB340401] ; National Basic Research Program of China (973 Program)[2013CB329602] ; National Natural Science Foundation of China[61425016] ; National Natural Science Foundation of China[61472400] ; National Natural Science Foundation of China[61572467] ; National Natural Science Foundation of China[61433014] ; National High Technology Research and Development Program of China (863 Program)[2014AA015204] ; National High Technology Research and Development Program of China (863 Program)[2015AA015803] ; Key Technologies RD Program[2017YFB0803302] ; Youth Innovation Promotion Association CAS
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:000443972500009
出版者SPRINGER LONDON LTD
引用统计
被引频次:30[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4903
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gou, Chengcheng
作者单位1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Gou, Chengcheng,Shen, Huawei,Du, Pan,et al. Learning sequential features for cascade outbreak prediction[J]. KNOWLEDGE AND INFORMATION SYSTEMS,2018,57(3):721-739.
APA Gou, Chengcheng,Shen, Huawei,Du, Pan,Wu, Dayong,Liu, Yue,&Cheng, Xueqi.(2018).Learning sequential features for cascade outbreak prediction.KNOWLEDGE AND INFORMATION SYSTEMS,57(3),721-739.
MLA Gou, Chengcheng,et al."Learning sequential features for cascade outbreak prediction".KNOWLEDGE AND INFORMATION SYSTEMS 57.3(2018):721-739.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gou, Chengcheng]的文章
[Shen, Huawei]的文章
[Du, Pan]的文章
百度学术
百度学术中相似的文章
[Gou, Chengcheng]的文章
[Shen, Huawei]的文章
[Du, Pan]的文章
必应学术
必应学术中相似的文章
[Gou, Chengcheng]的文章
[Shen, Huawei]的文章
[Du, Pan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。