CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning to Predict Bus Arrival Time From Heterogeneous Measurements via Recurrent Neural Network
Pang, Junbiao1; Huang, Jing2; Du, Yong3; Yu, Haitao3; Huang, Qingming4,5; Yin, Baocai6,7
2019-09-01
发表期刊IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
ISSN1524-9050
卷号20期号:9页码:3283-3293
摘要Bus arrival time prediction intends to improve the level of the services provided by transportation agencies. Intuitively, many stochastic factors affect the predictability of the arrival time, e.g., weather and local events. Moreover, the arrival time prediction for a current station is closely correlated with that of multiple passed stations. Motivated by the observations above, this paper proposes to exploit the long-range dependencies among the multiple time steps for bus arrival prediction via recurrent neural network (RNN). Concretely, RNN with long short-term memory block is used to "correct" the prediction for a station by the correlated multiple passed stations. During the correlation among multiple stations, one-hot coding is introduced to fuse heterogeneous information into a unified vector space. Therefore, the proposed framework leverages the dynamic measurements (i.e., historical trajectory data) and the static observations (i.e., statistics of the infrastructure) for bus arrival time prediction. In order to fairly compare with the state-of-the-art methods, to the best of our knowledge, we have released the largest data set for this task. The experimental results demonstrate the superior performances of our approach on this data set.
关键词Bus arriving time prediction recurrent neural network heterogenous measurement long-range dependencies multi-step-ahead prediction
DOI10.1109/TITS.2018.2873747
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[61672069] ; Natural Science Foundation of China[61872333] ; Natural Science Foundation of China[61620106009] ; China Post-Doctoral Research Foundation ; Beijing Municipal Commission of Education[KM201610005034] ; Beijing Municipal Commission of Transport Science and Technology Project
WOS研究方向Engineering ; Transportation
WOS类目Engineering, Civil ; Engineering, Electrical & Electronic ; Transportation Science & Technology
WOS记录号WOS:000484207200008
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:48[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4763
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Pang, Junbiao; Yu, Haitao
作者单位1.Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
2.IBM China Investment Co Ltd, Beijing 10085, Peoples R China
3.Beijing Transportat Informat Ctr, Beijing 100161, Peoples R China
4.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
6.Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China
7.Beijing Univ Technol, Beijing 100124, Peoples R China
推荐引用方式
GB/T 7714
Pang, Junbiao,Huang, Jing,Du, Yong,et al. Learning to Predict Bus Arrival Time From Heterogeneous Measurements via Recurrent Neural Network[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2019,20(9):3283-3293.
APA Pang, Junbiao,Huang, Jing,Du, Yong,Yu, Haitao,Huang, Qingming,&Yin, Baocai.(2019).Learning to Predict Bus Arrival Time From Heterogeneous Measurements via Recurrent Neural Network.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,20(9),3283-3293.
MLA Pang, Junbiao,et al."Learning to Predict Bus Arrival Time From Heterogeneous Measurements via Recurrent Neural Network".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 20.9(2019):3283-3293.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pang, Junbiao]的文章
[Huang, Jing]的文章
[Du, Yong]的文章
百度学术
百度学术中相似的文章
[Pang, Junbiao]的文章
[Huang, Jing]的文章
[Du, Yong]的文章
必应学术
必应学术中相似的文章
[Pang, Junbiao]的文章
[Huang, Jing]的文章
[Du, Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。