CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A fast and robust 3D face recognition approach based on deeply learned face representation
Cai, Ying2,3; Lei, Yinjie4; Yang, Menglong1,3; You, Zhisheng1,3; Shan, Shiguang5
2019-10-21
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号363页码:375-397
摘要With the superiority of three-dimensional (3D) scanning data, e.g., illumination invariance and pose robustness, 3D face recognition theoretically has the potential to achieve better results than two-dimensional (2D) face recognition. However, traditional 3D face recognition techniques suffer from high computational costs. This paper proposes a fast and robust 3D face recognition approach with three component technologies: a fast 3D scan preprocessing, multiple data augmentation, and a deep learning technique based on facial component patches. First, unlike the majority of the existing approaches, which require accurate facial registration, the proposed approach uses only three facial landmarks. Second, the specifical deep network with an improved supervision is designed to extract complementary features from four overlapping facial component patches. Finally, a data augmentation technique and three self-collected 3D face datasets are used to enlarge the scale of the training data. The proposed approach outperforms the state-of-the-art algorithms on four public 3D face benchmarks, i.e., 100%, 99.75%, 99.88%, and 99.07% rank-1 IRs with the standard test protocol on the FRGC v2.0, Bosphorus, BU-3DFE, and 3D-TEC datasets, respectively. Further, it requires only 0.84 seconds to identify a probe from a gallery with 466 faces. (C) 2019 Elsevier B.V. All rights reserved.
关键词3D face recognition Deep learning Face preprocessing Multiple data augmentation
DOI10.1016/j.neucom.2019.07.047
收录类别SCI
语种英语
资助项目Chinese Universities Scientific Fund[2019NYB05] ; National Natural Science Foundation of China[61702350] ; National Natural Science Foundation of China[61402307] ; National Natural Science Foundation of China[61403265] ; National Natural Science Foundation of China[71774134] ; National Natural Science Foundation of China[71373216] ; Sichuan Science and Technology Program[18YYJC1287] ; Sichuan Science and Technology Program[2015SZ0226] ; Sichuan University[2018SCUH0042] ; National Key Research and Development Program of China[2016YFC0801100] ; National Key Scientific Instrument and Equipment Development Project of China[2013YQ49087903]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000484005300034
出版者ELSEVIER
引用统计
被引频次:35[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4712
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yang, Menglong
作者单位1.Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu, Sichuan, Peoples R China
2.Southwest Minzu Univ, Sch Elect & Informat Engn, Chengdu, Sichuan, Peoples R China
3.Wisesoft Software Co Ltd, Chengdu, Sichuan, Peoples R China
4.Sichuan Univ, Sch Elect & Informat Engn, Chengdu, Sichuan, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Cai, Ying,Lei, Yinjie,Yang, Menglong,et al. A fast and robust 3D face recognition approach based on deeply learned face representation[J]. NEUROCOMPUTING,2019,363:375-397.
APA Cai, Ying,Lei, Yinjie,Yang, Menglong,You, Zhisheng,&Shan, Shiguang.(2019).A fast and robust 3D face recognition approach based on deeply learned face representation.NEUROCOMPUTING,363,375-397.
MLA Cai, Ying,et al."A fast and robust 3D face recognition approach based on deeply learned face representation".NEUROCOMPUTING 363(2019):375-397.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cai, Ying]的文章
[Lei, Yinjie]的文章
[Yang, Menglong]的文章
百度学术
百度学术中相似的文章
[Cai, Ying]的文章
[Lei, Yinjie]的文章
[Yang, Menglong]的文章
必应学术
必应学术中相似的文章
[Cai, Ying]的文章
[Lei, Yinjie]的文章
[Yang, Menglong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。