Institute of Computing Technology, Chinese Academy IR
Addressing Sparsity in Deep Neural Networks | |
Zhou, Xuda1,2,3; Du, Zidong2,3; Zhang, Shijin2,3; Zhang, Lei2,3,4,5; Lan, Huiying2,3,4,5; Liu, Shaoli2,3; Li, Ling6; Guo, Qi2,3; Chen, Tianshi2,3; Chen, Yunji2,7 | |
2019-10-01 | |
发表期刊 | IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS |
ISSN | 0278-0070 |
卷号 | 38期号:10页码:1858-1871 |
摘要 | Neural networks (NNs) have been demonstrated to be useful in a broad range of applications, such as image recognition, automatic translation, and advertisement recommendation. State-of-the-art NNs are known to be both computationally and memory intensive, due to the ever-increasing deep structure, i.e., multiple layers with massive neurons and connections (i.e., synapses). Sparse NNs have emerged as an effective solution to reduce the amount of computation and memory required. Though existing NN accelerators are able to efficiently process dense and regular networks, they cannot benefit from the reduction of synaptic weights. In this paper, we propose a novel accelerator, Cambricon-X, to exploit the sparsity and irregularity of NN models for increased efficiency. The proposed accelerator features a processing element (PE)-based architecture consisting of multiple PEs. An indexing module efficiently selects and transfers needed neurons to connected PEs with reduced bandwidth requirement, while each PE stores irregular and compressed synapses for local computation in an asynchronous fashion. With 16 PEs, our accelerator is able to achieve at most 544 GOP/s in a small form factor (6.38 mm(2) and 954 mW at 65 nm). Experimental results over a number of representative sparse networks show that our accelerator achieves, on average, 7.23x speedup and 6.43x energy saving against the state-of-the-art NN accelerator. We further investigate possibilities of leveraging activation sparsity and multi-issue controller, which improve the efficiency of Cambricon-X. To ease the burden of programmers, we also propose a high efficient library-based programming environment for our accelerator. |
关键词 | Accelerator architecture deep neural networks (DNNs) sparsity |
DOI | 10.1109/TCAD.2018.2864289 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2017YFA0700902] ; National Key Research and Development Program of China[2017YFA0700900] ; National Key Research and Development Program of China[2017YFB1003101] ; NSF of China[61472396] ; NSF of China[61432016] ; NSF of China[61473275] ; NSF of China[61522211] ; NSF of China[61532016] ; NSF of China[61521092] ; NSF of China[61502446] ; NSF of China[61672491] ; NSF of China[61602441] ; NSF of China[61602446] ; NSF of China[61732002] ; NSF of China[61702478] ; 973 Program of China[2015CB358800] ; National Science and Technology Major Project[2018ZX01031102] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDBS01050200] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000487193400007 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/4676 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Chen, Yunji |
作者单位 | 1.Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230000, Anhui, Peoples R China 2.Chinese Acad Sci, Intelligence Processor Res Ctr, Inst Comp Technol, Beijing 100190, Peoples R China 3.Cambricon Tech Ltd, Beijing 100191, Peoples R China 4.Univ Chinese Acad Sci, State Key Lab Comp Architecture, Beijing 100190, Peoples R China 5.Univ Chinese Acad Sci, Intelligence Processor Res Ctr, Beijing 100190, Peoples R China 6.Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China 7.Chinese Acad Sci, CAS Ctr Excellence Brain Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Zhou, Xuda,Du, Zidong,Zhang, Shijin,et al. Addressing Sparsity in Deep Neural Networks[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2019,38(10):1858-1871. |
APA | Zhou, Xuda.,Du, Zidong.,Zhang, Shijin.,Zhang, Lei.,Lan, Huiying.,...&Chen, Yunji.(2019).Addressing Sparsity in Deep Neural Networks.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,38(10),1858-1871. |
MLA | Zhou, Xuda,et al."Addressing Sparsity in Deep Neural Networks".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 38.10(2019):1858-1871. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论