CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Multi-Component Fusion Network for Small Object Detection in Remote Sensing Images
Liu, Jing1,2,3; Yang, Shuojin1,2; Tian, Liang1,2; Guo, Wei2; Zhou, Bingyin2; Jia, Jianqing2; Ling, Haibin4
2019
发表期刊IEEE ACCESS
ISSN2169-3536
卷号7页码:128339-128352
摘要Small object detection is a major challenge in the field of object detection. With the development of deep learning, many methods based on deep convolutional neural networks (DCNNs) have greatly improved the speed of detection while ensuring accuracy. However, due to the contradiction between the spatial details and semantic information of DCNNs, previous deep learning methods often meet problems when detecting small objects. The challenge can be more serious in complex scenes involving similar background objects and/or occlusion, such as in remote sensing imagery. In this paper, we propose an end-to-end DCNN called the multi-component fusion network (MCFN) to improve the accuracy of small object detection in such cases. First, we propose a dual pyramid fusion network, which densely concatenates spatial information and semantic information to extract small object features via encoding and decoding operations. Then we use a relative region proposal network to adequately extract the features of small objects samples and parts of objects. Finally, to achieve robustness against background disturbance, we add contextual information to the proposal regions before final detection. Experimental evaluations demonstrate that the proposed method significantly improves the accuracy of object detection in remote sensing images compared with other state-of-the-art methods, especially in complex scenes with the conditions of occlusion.
关键词Small object remote sensing multi-component dual pyramid fusion occlusion complex scene
DOI10.1109/ACCESS.2019.2939488
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61802109] ; Science and Technology Foundation of Hebei Province Higher Education[QN2019166] ; Natural Science Foundation of Hebei Province[F2017205066] ; Science Foundation of Hebei Normal University[L2017B06] ; Science Foundation of Hebei Normal University[L2018K02] ; Science Foundation of Hebei Normal University[L2019K01]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000487233800014
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:37[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4653
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tian, Liang; Guo, Wei
作者单位1.Hebei Normal Univ, Coll Comp & Cyber Secur, Shijiazhuang 050024, Hebei, Peoples R China
2.Hebei Normal Univ, Coll Math & Informat Sci, Key Lab Augmented Real, Shijiazhuang 050024, Hebei, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
4.Temple Univ, Dept Comp & Informat Sci, Ctr Data Analyt & Biomed Informat, Philadelphia, PA 19122 USA
推荐引用方式
GB/T 7714
Liu, Jing,Yang, Shuojin,Tian, Liang,et al. Multi-Component Fusion Network for Small Object Detection in Remote Sensing Images[J]. IEEE ACCESS,2019,7:128339-128352.
APA Liu, Jing.,Yang, Shuojin.,Tian, Liang.,Guo, Wei.,Zhou, Bingyin.,...&Ling, Haibin.(2019).Multi-Component Fusion Network for Small Object Detection in Remote Sensing Images.IEEE ACCESS,7,128339-128352.
MLA Liu, Jing,et al."Multi-Component Fusion Network for Small Object Detection in Remote Sensing Images".IEEE ACCESS 7(2019):128339-128352.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Jing]的文章
[Yang, Shuojin]的文章
[Tian, Liang]的文章
百度学术
百度学术中相似的文章
[Liu, Jing]的文章
[Yang, Shuojin]的文章
[Tian, Liang]的文章
必应学术
必应学术中相似的文章
[Liu, Jing]的文章
[Yang, Shuojin]的文章
[Tian, Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。