Institute of Computing Technology, Chinese Academy IR
Best-first search guided multistage mass spectrometry-based glycan identification | |
Wang, Yaojun1,2; Bu, Dongbo1; Huang, Chuncui3; Wang, Hui1,4; Zhou, Jinyu3,4; Dong, Junchuan1,4; Pan, Weiyi1,4; Zhang, Jingwei1,4; Zhang, Qi1,4; Li, Yan3; Sun, Shiwei1 | |
2019-09-01 | |
发表期刊 | BIOINFORMATICS |
ISSN | 1367-4803 |
卷号 | 35期号:17页码:2991-2997 |
摘要 | Motivation: Glycan identification has long been hampered by complicated branching patterns and various isomeric structures of glycans. Multistage mass spectrometry (MSn) is a promising glycan identification technique as it generates multiple-level fragments of a glycan, which can be explored to deduce branching pattern of the glycan and further distinguish it from other candidates with identical mass. However, the automatic glycan identification still remains a challenge since it mainly relies on expertise to guide a MSn instrument to generate spectra. Results: Here, we proposed a novel method, named bestFSA, based on a best-first search algorithm to guide the process of spectrum producing in glycan identification using MSn. BestFSA is able to select the most appropriate peaks for next round of experiments and complete the identification using as few experimental rounds. Our analysis of seven representative glycans shows that bestFSA correctly distinguishes actual glycans efficiently and suggested bestFSA could be used in practical glycan identification. The combination of the MSn technology coupled with bestFSA should greatly facilitate the automatic identification of glycan branching patterns, with significantly improved identification sensitivity, and reduce time and cost of MSn experiments. |
DOI | 10.1093/bioinformatics/btz056 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2018YFC0910405] ; National Natural Science Foundation of China[31671369] ; National Natural Science Foundation of China[31600650] ; National Natural Science Foundation of China[31770775] ; International Partnership Program of Chinese Academy of Sciences[153311KYSB20150012] |
WOS研究方向 | Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics |
WOS类目 | Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability |
WOS记录号 | WOS:000487323400014 |
出版者 | OXFORD UNIV PRESS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/4610 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Li, Yan; Sun, Shiwei |
作者单位 | 1.Chinese Acad Sci, Inst Comp & Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China 2.Peking Univ, Guanghua Sch Management, Beijing, Peoples R China 3.Chinese Acad Sci, Inst Biophys, Beijing, Peoples R China 4.Univ Chinese Acad Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Yaojun,Bu, Dongbo,Huang, Chuncui,et al. Best-first search guided multistage mass spectrometry-based glycan identification[J]. BIOINFORMATICS,2019,35(17):2991-2997. |
APA | Wang, Yaojun.,Bu, Dongbo.,Huang, Chuncui.,Wang, Hui.,Zhou, Jinyu.,...&Sun, Shiwei.(2019).Best-first search guided multistage mass spectrometry-based glycan identification.BIOINFORMATICS,35(17),2991-2997. |
MLA | Wang, Yaojun,et al."Best-first search guided multistage mass spectrometry-based glycan identification".BIOINFORMATICS 35.17(2019):2991-2997. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论