CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning Coupled Convolutional Networks Fusion for Video Saliency Prediction
Wu, Zhe1,2; Su, Li1,2; Huang, Qingming1,2,3
2019-10-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
ISSN1051-8215
卷号29期号:10页码:2960-2971
摘要Visual saliency provides important information for understanding scenes in many computer vision tasks. The existing video saliency algorithms mainly focus on predicting spatial and temporal saliency maps. However, these maps are simply fused without considering the complex dynamic scenes in videos. To overcome this drawback, we propose a deep convolutional fusion framework for video saliency prediction. The proposed model, which is based on coupled fully convolutional networks (FCNs), effectively encodes the spatiotemporal information by integrating spatial and temporal features. We demonstrate that this information is helpful for accurately fusing the spatial and temporal saliency maps according to changes in video scenes. In particular, we gradually design three different deep fusion architectures to investigate how to better utilize the spatiotemporal information. Moreover, we propose a reasonable sampling strategy for selecting suitable training sets for the coupled FCNs. Through extensive experiments, we demonstrate that our model outperforms the state-of-the-art algorithms on four public video saliency data sets.
关键词Video saliency feature integration fully convolutional network
DOI10.1109/TCSVT.2018.2870954
收录类别SCI
语种英语
资助项目National Natural Sciences Foundation of China[61472389] ; National Natural Sciences Foundation of China[61650202] ; National Natural Sciences Foundation of China[61332016] ; National Natural Sciences Foundation of China[61620106009] ; National Natural Sciences Foundation of China[U1636214] ; Key Research Program of Frontier Sciences[CAS: QYZDJ-SSW-SYS013]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000489749900008
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4597
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Su, Li
作者单位1.UCAS, Sch Comp & Control Engn, Beijing 101408, Peoples R China
2.UCAS, Key Lab Big Data Min & Knowledge Management, Beijing 101408, Peoples R China
3.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wu, Zhe,Su, Li,Huang, Qingming. Learning Coupled Convolutional Networks Fusion for Video Saliency Prediction[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2019,29(10):2960-2971.
APA Wu, Zhe,Su, Li,&Huang, Qingming.(2019).Learning Coupled Convolutional Networks Fusion for Video Saliency Prediction.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,29(10),2960-2971.
MLA Wu, Zhe,et al."Learning Coupled Convolutional Networks Fusion for Video Saliency Prediction".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 29.10(2019):2960-2971.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Zhe]的文章
[Su, Li]的文章
[Huang, Qingming]的文章
百度学术
百度学术中相似的文章
[Wu, Zhe]的文章
[Su, Li]的文章
[Huang, Qingming]的文章
必应学术
必应学术中相似的文章
[Wu, Zhe]的文章
[Su, Li]的文章
[Huang, Qingming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。