CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning Coexistence Discriminative Features for Multi-Class Object Detection
Yao, Chao1,2; Sun, Pengfei1; Zhi, Ruicong2; Shen, Yanfei3,4
2018
发表期刊IEEE ACCESS
ISSN2169-3536
卷号6页码:37676-37684
摘要Existing methods on object detection have the ability to learn the discriminative features of local regions for object recognition; however, the coexistence relation between the multi-class objects could also benefit recognition. In this paper, we propose to learn the coexistence discriminative features for multi-class object detection. Given an image with multiple class objects, the strong supervision of the region-based annotations are first used as the image-level label to learn the independent discriminative features for each class. Then, the coexistence relation is fused as coexistence feature based on the attention mechanism. By combining the independent discriminative features and coexistence feature, the classification performance of multi-class object proposals can be consistently improved. Experimental results prove that the proposed end-to-end network outperforms the state-of-the-art object detection approaches, and the learned discriminative features can effectively capture the coexistence relations to improve classification performance of multi-class objects in the object detection task.
关键词Object detection faster R-CNN coexistence relation multi-class objects class attention map
DOI10.1109/ACCESS.2018.2852728
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61471343] ; National Natural Science Foundation of China[61701036] ; Fundamental Research Funds for the Central Universities[2017RC52]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000439698700097
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:16[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4561
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhi, Ruicong; Shen, Yanfei
作者单位1.Beijing Univ Posts & Telecommun, Inst Sensing Technol & Business, Beijing 100876, Peoples R China
2.Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 10083, Peoples R China
3.Beijing Sport Univ, Sports & Engn Coll, Beijing 100084, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yao, Chao,Sun, Pengfei,Zhi, Ruicong,et al. Learning Coexistence Discriminative Features for Multi-Class Object Detection[J]. IEEE ACCESS,2018,6:37676-37684.
APA Yao, Chao,Sun, Pengfei,Zhi, Ruicong,&Shen, Yanfei.(2018).Learning Coexistence Discriminative Features for Multi-Class Object Detection.IEEE ACCESS,6,37676-37684.
MLA Yao, Chao,et al."Learning Coexistence Discriminative Features for Multi-Class Object Detection".IEEE ACCESS 6(2018):37676-37684.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yao, Chao]的文章
[Sun, Pengfei]的文章
[Zhi, Ruicong]的文章
百度学术
百度学术中相似的文章
[Yao, Chao]的文章
[Sun, Pengfei]的文章
[Zhi, Ruicong]的文章
必应学术
必应学术中相似的文章
[Yao, Chao]的文章
[Sun, Pengfei]的文章
[Zhi, Ruicong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。