CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
pNovo 3: precise de novo peptide sequencing using a learning-to-rank framework
Yang, Hao1,2; Chi, Hao1,2; Zeng, Wen-Feng1,2; Zhou, Wen-Jing1,2; He, Si-Min1,2
2019-07-15
发表期刊BIOINFORMATICS
ISSN1367-4803
卷号35期号:14页码:I183-I190
摘要Motivation De novo peptide sequencing based on tandem mass spectrometry data is the key technology of shotgun proteomics for identifying peptides without any database and assembling unknown proteins. However, owing to the low ion coverage in tandem mass spectra, the order of certain consecutive amino acids cannot be determined if all of their supporting fragment ions are missing, which results in the low precision of de novo sequencing. Results In order to solve this problem, we developed pNovo 3, which used a learning-to-rank framework to distinguish similar peptide candidates for each spectrum. Three metrics for measuring the similarity between each experimental spectrum and its corresponding theoretical spectrum were used as important features, in which the theoretical spectra can be precisely predicted by the pDeep algorithm using deep learning. On seven benchmark datasets from six diverse species, pNovo 3 recalled 29-102% more correct spectra, and the precision was 11-89% higher than three other state-of-the-art de novo sequencing algorithms. Furthermore, compared with the newly developed DeepNovo, which also used the deep learning approach, pNovo 3 still identified 21-50% more spectra on the nine datasets used in the study of DeepNovo. In summary, the deep learning and learning-to-rank techniques implemented in pNovo 3 significantly improve the precision of de novo sequencing, and such machine learning framework is worth extending to other related research fields to distinguish the similar sequences. Availability and implementation pNovo 3 can be freely downloaded from http://pfind.ict.ac.cn/software/pNovo/index.html. Supplementary information Supplementary data are available at Bioinformatics online.
DOI10.1093/bioinformatics/btz366
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2016YFA0501300] ; National Natural Science Foundation of China[31470805] ; Youth Innovation Promotion Association CAS[2014091] ; National High Technology Research and Development Program of China (863)[2014AA020902] ; National High Technology Research and Development Program of China (863)[2014AA020901]
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
WOS类目Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号WOS:000477703600021
出版者OXFORD UNIV PRESS
引用统计
被引频次:54[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4520
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chi, Hao; He, Si-Min
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Yang, Hao,Chi, Hao,Zeng, Wen-Feng,et al. pNovo 3: precise de novo peptide sequencing using a learning-to-rank framework[J]. BIOINFORMATICS,2019,35(14):I183-I190.
APA Yang, Hao,Chi, Hao,Zeng, Wen-Feng,Zhou, Wen-Jing,&He, Si-Min.(2019).pNovo 3: precise de novo peptide sequencing using a learning-to-rank framework.BIOINFORMATICS,35(14),I183-I190.
MLA Yang, Hao,et al."pNovo 3: precise de novo peptide sequencing using a learning-to-rank framework".BIOINFORMATICS 35.14(2019):I183-I190.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Hao]的文章
[Chi, Hao]的文章
[Zeng, Wen-Feng]的文章
百度学术
百度学术中相似的文章
[Yang, Hao]的文章
[Chi, Hao]的文章
[Zeng, Wen-Feng]的文章
必应学术
必应学术中相似的文章
[Yang, Hao]的文章
[Chi, Hao]的文章
[Zeng, Wen-Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。