Institute of Computing Technology, Chinese Academy IR
Self-organizing weighted incremental probabilistic latent semantic analysis | |
Li, Ning1,2; Luo, Wenjuan2; Yang, Kun3; Zhuang, Fuzhen2; He, Qing2; Shi, Zhongzhi2 | |
2018-12-01 | |
发表期刊 | INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS |
ISSN | 1868-8071 |
卷号 | 9期号:12页码:1987-1998 |
摘要 | PLSA (Probabilistic Latent Semantic Analysis) is a popular topic modeling technique which has been widely applied to text mining applications to discover the underlying topics embedded in the data corpus. However, due to the variability of increasing data, it is necessary to discover the dynamic topics and process the large dataset incrementally. Moreover, PLSA models suffer from the problem of inferencing new documents. To overcome these problems, in this paper, we propose a novel Weighted Incremental PLSA algorithm called WIPLSA to dynamically discover topics and incrementally learn the topics from new documents. The experiments verify that the proposed WIPLSA could capture the dynamic topics hidden in the dynamic updating data corpus. Compared with PLSA, MAP PLSA and QB PLSA, WIPLSA performs better in perspexity on large dataset, which make it applicable for big data mining. In addition, WIPLSA has good performance in the application of document categorization. |
关键词 | Probabilistic latent semantic analysis Weighted incremental learning Similarity Big data |
DOI | 10.1007/s13042-017-0681-9 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[91546122] ; National Natural Science Foundation of China[61602438] ; National Natural Science Foundation of China[61573335] ; National Natural Science Foundation of China[61473273] ; National Natural Science Foundation of China[61473274] ; National Natural Science Foundation of China[61363058] ; National High-tech R&D Program of China (863 Program)[2014AA015105] ; National Science and Technology Support Program[2014BAK02B07] ; National major R&D program of Beijing Municipal Science & Technology Commission[Z161100002616032] ; Guangdong provincial science and technology plan projects[2015 B 010109005] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000450175600003 |
出版者 | SPRINGER HEIDELBERG |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/4340 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Li, Ning |
作者单位 | 1.Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 3.Natl Inst Metrol, Beijing 100029, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Ning,Luo, Wenjuan,Yang, Kun,et al. Self-organizing weighted incremental probabilistic latent semantic analysis[J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS,2018,9(12):1987-1998. |
APA | Li, Ning,Luo, Wenjuan,Yang, Kun,Zhuang, Fuzhen,He, Qing,&Shi, Zhongzhi.(2018).Self-organizing weighted incremental probabilistic latent semantic analysis.INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS,9(12),1987-1998. |
MLA | Li, Ning,et al."Self-organizing weighted incremental probabilistic latent semantic analysis".INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 9.12(2018):1987-1998. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论