CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video
Huang, Zhiwu1; Wang, Ruiping3; Shan, Shiguang3,4; Van Gool, Luc1,2; Chen, Xilin3
2018-12-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号40期号:12页码:2827-2840
摘要Riemannian manifolds have been widely employed for video representations in visual classification tasks including video-based face recognition. The success mainly derives from learning a discriminant Riemannian metric which encodes the non-linear geometry of the underlying Riemannian manifolds. In this paper, we propose a novel metric learning framework to learn a distance metric across a Euclidean space and a Riemannian manifold to fuse average appearance and pattern variation of faces within one video. The proposed metric learning framework can handle three typical tasks of video-based face recognition: Video-to-Still, Still-to-Video and Video-to-Video settings. To accomplish this new framework, by exploiting typical Riemannian geometries for kernel embedding, we map the source Euclidean space and Riemannian manifold into a common Euclidean subspace, each through a corresponding high-dimensional Reproducing Kernel Hilbert Space (RKHS). With this mapping, the problem of learning a cross-view metric between the two source heterogeneous spaces can be converted to learning a single-view Euclidean distance metric in the target common Euclidean space. By learning information on heterogeneous data with the shared label, the discriminant metric in the common space improves face recognition from videos. Extensive experiments on four challenging video face databases demonstrate that the proposed framework has a clear advantage over the state-of-the-art methods in the three classical video-based face recognition scenarios.
关键词Riemannian manifold video-based face recognition cross Euclidean-to-Riemannian metric learning
DOI10.1109/TPAMI.2017.2776154
收录类别SCI
语种英语
资助项目973 Program[2015CB351802] ; Natural Science Foundation of China[61390511] ; Natural Science Foundation of China[61379083] ; Natural Science Foundation of China[61650202] ; Natural Science Foundation of China[61402443] ; Natural Science Foundation of China[61672496] ; Frontier Science Key Research Project CAS[QYZDJ-SSW-JSC009] ; Youth Innovation Promotion Association CAS[2015085]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000449355500003
出版者IEEE COMPUTER SOC
引用统计
被引频次:59[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4332
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shan, Shiguang
作者单位1.Swiss Fed Inst Technol, Comp Vis Lab, CH-8092 Zurich, Switzerland
2.Katholieke Univ Leuven, VIS Lab, B-3000 Leuven, Belgium
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
4.CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Huang, Zhiwu,Wang, Ruiping,Shan, Shiguang,et al. Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2018,40(12):2827-2840.
APA Huang, Zhiwu,Wang, Ruiping,Shan, Shiguang,Van Gool, Luc,&Chen, Xilin.(2018).Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,40(12),2827-2840.
MLA Huang, Zhiwu,et al."Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 40.12(2018):2827-2840.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Zhiwu]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
百度学术
百度学术中相似的文章
[Huang, Zhiwu]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
必应学术
必应学术中相似的文章
[Huang, Zhiwu]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。