CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Low-Light Image Enhancement via a Deep Hybrid Network
Ren, Wenqi1; Liu, Sifei2; Ma, Lin3; Xu, Qianqian4; Xu, Xiangyu5; Cao, Xiaochun1; Du, Junping6; Yang, Ming-Hsuan7
2019-09-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号28期号:9页码:4364-4375
摘要Camera sensors often fail to capture clear images or videos in a poorly lit environment. In this paper, we propose a trainable hybrid network to enhance the visibility of such degraded images. The proposed network consists of two distinct streams to simultaneously learn the global content and the salient structures of the clear image in a unified network. More specifically, the content stream estimates the global content of the low-light input through an encoder-decoder network. However, the encoder in the content stream tends to lose some structure details. To remedy this, we propose a novel spatially variant recurrent neural network (RNN) as an edge stream to model edge details, with the guidance of another auto-encoder. The experimental results show that the proposed network favorably performs against the state-of-the-art low-light image enhancement algorithms.
关键词Low-light image enhancement convolutional neural network recurrent neural network
DOI10.1109/TIP.2019.2910412
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[U1736219] ; National Natural Science Foundation of China[U1605252] ; National Natural Science Foundation of China[U1803264] ; National Natural Science Foundation of China[61532006] ; National Natural Science Foundation of China[61772083] ; National Natural Science Foundation of China[61802403] ; National Key R&D Program of China[2018YFB0803701] ; Beijing Natural Science Foundation[L182057] ; CCF-Tencent Open Fund
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000473641100014
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:330[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4316
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cao, Xiaochun
作者单位1.Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
2.NVIDIA Res, Santa Clara, CA 95051 USA
3.Tencent AI Lab, Shenzhen 518000, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100080, Peoples R China
5.SenseTime, Beijing 100084, Peoples R China
6.Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China
7.Univ Calif Merced, Sch Engn, Merced, CA 95343 USA
推荐引用方式
GB/T 7714
Ren, Wenqi,Liu, Sifei,Ma, Lin,et al. Low-Light Image Enhancement via a Deep Hybrid Network[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2019,28(9):4364-4375.
APA Ren, Wenqi.,Liu, Sifei.,Ma, Lin.,Xu, Qianqian.,Xu, Xiangyu.,...&Yang, Ming-Hsuan.(2019).Low-Light Image Enhancement via a Deep Hybrid Network.IEEE TRANSACTIONS ON IMAGE PROCESSING,28(9),4364-4375.
MLA Ren, Wenqi,et al."Low-Light Image Enhancement via a Deep Hybrid Network".IEEE TRANSACTIONS ON IMAGE PROCESSING 28.9(2019):4364-4375.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ren, Wenqi]的文章
[Liu, Sifei]的文章
[Ma, Lin]的文章
百度学术
百度学术中相似的文章
[Ren, Wenqi]的文章
[Liu, Sifei]的文章
[Ma, Lin]的文章
必应学术
必应学术中相似的文章
[Ren, Wenqi]的文章
[Liu, Sifei]的文章
[Ma, Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。