Institute of Computing Technology, Chinese Academy IR
Low-Light Image Enhancement via a Deep Hybrid Network | |
Ren, Wenqi1; Liu, Sifei2; Ma, Lin3; Xu, Qianqian4; Xu, Xiangyu5; Cao, Xiaochun1; Du, Junping6; Yang, Ming-Hsuan7 | |
2019-09-01 | |
发表期刊 | IEEE TRANSACTIONS ON IMAGE PROCESSING |
ISSN | 1057-7149 |
卷号 | 28期号:9页码:4364-4375 |
摘要 | Camera sensors often fail to capture clear images or videos in a poorly lit environment. In this paper, we propose a trainable hybrid network to enhance the visibility of such degraded images. The proposed network consists of two distinct streams to simultaneously learn the global content and the salient structures of the clear image in a unified network. More specifically, the content stream estimates the global content of the low-light input through an encoder-decoder network. However, the encoder in the content stream tends to lose some structure details. To remedy this, we propose a novel spatially variant recurrent neural network (RNN) as an edge stream to model edge details, with the guidance of another auto-encoder. The experimental results show that the proposed network favorably performs against the state-of-the-art low-light image enhancement algorithms. |
关键词 | Low-light image enhancement convolutional neural network recurrent neural network |
DOI | 10.1109/TIP.2019.2910412 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[U1736219] ; National Natural Science Foundation of China[U1605252] ; National Natural Science Foundation of China[U1803264] ; National Natural Science Foundation of China[61532006] ; National Natural Science Foundation of China[61772083] ; National Natural Science Foundation of China[61802403] ; National Key R&D Program of China[2018YFB0803701] ; Beijing Natural Science Foundation[L182057] ; CCF-Tencent Open Fund |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000473641100014 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/4316 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Cao, Xiaochun |
作者单位 | 1.Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China 2.NVIDIA Res, Santa Clara, CA 95051 USA 3.Tencent AI Lab, Shenzhen 518000, Peoples R China 4.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100080, Peoples R China 5.SenseTime, Beijing 100084, Peoples R China 6.Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China 7.Univ Calif Merced, Sch Engn, Merced, CA 95343 USA |
推荐引用方式 GB/T 7714 | Ren, Wenqi,Liu, Sifei,Ma, Lin,et al. Low-Light Image Enhancement via a Deep Hybrid Network[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2019,28(9):4364-4375. |
APA | Ren, Wenqi.,Liu, Sifei.,Ma, Lin.,Xu, Qianqian.,Xu, Xiangyu.,...&Yang, Ming-Hsuan.(2019).Low-Light Image Enhancement via a Deep Hybrid Network.IEEE TRANSACTIONS ON IMAGE PROCESSING,28(9),4364-4375. |
MLA | Ren, Wenqi,et al."Low-Light Image Enhancement via a Deep Hybrid Network".IEEE TRANSACTIONS ON IMAGE PROCESSING 28.9(2019):4364-4375. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论