CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Hedging Deep Features for Visual Tracking
Qi, Yuankai1; Zhang, Shengping2; Qin, Lei3; Huang, Qingming1,3,4; Yao, Hongxun1; Lim, Jongwoo5; Yang, Ming-Hsuan6
2019-05-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号41期号:5页码:1116-1130
摘要Convolutional Neural Networks (CNNs) have been applied to visual tracking with demonstrated success in recent years. Most CNN-based trackers utilize hierarchical features extracted from a certain layer to represent the target. However, features from a certain layer are not always effective for distinguishing the target object from the backgrounds especially in the presence of complicated interfering factors (e.g., heavy occlusion, background clutter, illumination variation, and shape deformation). In this work, we propose a CNN-based tracking algorithm which hedges deep features from different CNN layers to better distinguish target objects and background clutters. Correlation filters are applied to feature maps of each CNN layer to construct a weak tracker, and all weak trackers are hedged into a strong one. For robust visual tracking, we propose a hedge method to adaptively determine weights of weak classifiers by considering both the difference between the historical as well as instantaneous performance, and the difference among all weak trackers over time. In addition, we design a Siamese network to define the loss of each weak tracker for the proposed hedge method. Extensive experiments on large benchmark datasets demonstrate the effectiveness of the proposed algorithm against the state-of-the-art tracking methods.
关键词Visual tracking convolutional neural network adaptive hedge Siamese network
DOI10.1109/TPAMI.2018.2828817
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61650202] ; National Natural Science Foundation of China[61672188] ; National Natural Science Foundation of China[61572465] ; National Natural Science Foundation of China[61390510] ; National Natural Science Foundation of China[61732007] ; National Natural Science Foundation of China[61472103] ; National Natural Science Foundation of China[61772158] ; National Natural Science Foundation of China[U1711265] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013] ; NRF - Ministry of Science, ICT Korea[NRF-2017R1A2B4011928] ; NRF - Ministry of Science, ICT Korea[NRF-2017M3C4A7069369] ; NSF CAREER[1149783] ; Young Excellent Talent Program of Harbin Institute of Technology
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000463607400007
出版者IEEE COMPUTER SOC
引用统计
被引频次:54[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4270
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Shengping; Huang, Qingming
作者单位1.Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
2.Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Shandong, Peoples R China
3.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
5.Hanyang Univ, Dept Comp Sci, Seoul 133791, South Korea
6.Univ Calif Merced, Sch Engn, Merced, CA 95344 USA
推荐引用方式
GB/T 7714
Qi, Yuankai,Zhang, Shengping,Qin, Lei,et al. Hedging Deep Features for Visual Tracking[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2019,41(5):1116-1130.
APA Qi, Yuankai.,Zhang, Shengping.,Qin, Lei.,Huang, Qingming.,Yao, Hongxun.,...&Yang, Ming-Hsuan.(2019).Hedging Deep Features for Visual Tracking.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,41(5),1116-1130.
MLA Qi, Yuankai,et al."Hedging Deep Features for Visual Tracking".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 41.5(2019):1116-1130.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qi, Yuankai]的文章
[Zhang, Shengping]的文章
[Qin, Lei]的文章
百度学术
百度学术中相似的文章
[Qi, Yuankai]的文章
[Zhang, Shengping]的文章
[Qin, Lei]的文章
必应学术
必应学术中相似的文章
[Qi, Yuankai]的文章
[Zhang, Shengping]的文章
[Qin, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。