CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Central Feature Network Enables Accurate Detection of Both Small and Large Particles in Cryo-Electron Tomography
Wang, Yao-Yu1,2; Wan, Xiao-Hua3; Chen, Cheng4; Zhang, Fa3; Cui, Xue-Feng4
2025-05-22
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN1000-9000
页码13
摘要Advances in cryo-electron tomography (cryo-ET) have enabled the visualization of molecules within their native cellular environments in three-dimensions (3D). These visualizations are essential for studying the functions of biological entities in their natural conditions. Recently, deep learning techniques have shown significant success in tackling the challenge of particle detection in cryo-ET data. However, accurately identifying and classifying multi-class molecules remain challenging due to factors like low signal-to-noise ratios and the wide range of particle sizes. In this study, we introduce a novel framework CFNPicker for 3D object detection applied to cryo-ET analysis. A major advantage of our method is the design of central feature network (CFN) to integrate central features across multiple scales, allowing for the accurate detection of both small (<= 200) and large (>= 600) molecules. Additionally, we propose an adaptive weighted sampling training strategy to distinguish the complex noise distribution in the background, reducing false positive particles. We also construct the localization label to explicitly utilize the size and position variations of multi-class protein structures. Compared with existing methods, CFN improves the F1 score for classification by 3.6%, 7.3%, 6.6%, and 5.1% for the four smallest molecules tested respectively, while preserving similar or higher F1 scores for other molecules analyzed.
关键词particle detection cryo-electron tomography pattern recognition deep learning
DOI10.1007/s11390-025-4816-2
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2021YFF0704300] ; National Natural Science Foundation of China[32241027] ; National Natural Science Foundation of China[62072441] ; National Natural Science Foundation of China[62072283]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:001492846400001
出版者SPRINGER SINGAPORE PTE LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42404
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Fa; Cui, Xue-Feng
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
3.Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
4.Shandong Univ, Sch Comp Sci & Technol, Qingdao 266237, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yao-Yu,Wan, Xiao-Hua,Chen, Cheng,et al. Central Feature Network Enables Accurate Detection of Both Small and Large Particles in Cryo-Electron Tomography[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2025:13.
APA Wang, Yao-Yu,Wan, Xiao-Hua,Chen, Cheng,Zhang, Fa,&Cui, Xue-Feng.(2025).Central Feature Network Enables Accurate Detection of Both Small and Large Particles in Cryo-Electron Tomography.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,13.
MLA Wang, Yao-Yu,et al."Central Feature Network Enables Accurate Detection of Both Small and Large Particles in Cryo-Electron Tomography".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (2025):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yao-Yu]的文章
[Wan, Xiao-Hua]的文章
[Chen, Cheng]的文章
百度学术
百度学术中相似的文章
[Wang, Yao-Yu]的文章
[Wan, Xiao-Hua]的文章
[Chen, Cheng]的文章
必应学术
必应学术中相似的文章
[Wang, Yao-Yu]的文章
[Wan, Xiao-Hua]的文章
[Chen, Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。