CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
SILTD: Structural Information for LLM-Generated Text Detection
Yang, Jing1,2; Wang, Shi1,2; Zi, Kangli1,2; Sun, Yanshun1,2; Huang, Yuwei1,2; Luo, Tianyu1,2
2025-05-23
发表期刊INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
ISSN1868-8071
页码16
摘要The rapid development of large language models (LLMs) has significantly improved the quality and diversity of AI-generated content(AIGC). LLM-Generated text detection plays an important role in preventing the harmful misuse of large language models. Existing approaches primarily analyze texts individually, overlooking the structural relationships between them. This limitation restricts their ability to generalize across diverse LLMs, as they fail to capture the shared statistical patterns inherent in generated texts. To address this, an unsupervised-based structural information for LLM-generated text detection (SILTD) method is proposed. The key insight is that texts from different LLMs exhibit latent similarities in their generative statistical space, which can be modeled to improve cross-model generalization. First, we construct a multi-relational text graph based on the similarity of text features, which aims to model the intricate similarities and correlations between texts. Second, we propose a novel unsupervised graph clustering method. The multi-relational graph is transformed into an encoding tree, which is then optimized based on a two-dimensional structure entropy minimization algorithm to achieve hierarchical clustering of texts. Structural entropy minimization enables achieving high-quality clusters, by measuring the uncertainty of random walks within the graph. Finally, we introduce a new method that measures text similarity and computes the intensity of text aggregation within each cluster, to perform in-cluster label inference. Extensive experiments show that, compared to baseline methods, our approach is more effective and generalizable in detecting six popular LLMs across five datasets.
关键词LLM-generated text detection Structural information Multi-relational graph Clustering
DOI10.1007/s13042-025-02616-x
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2022YFC3302300] ; Advanced Research Project[7090201050307] ; National 242 Information Security Program[2023A105]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001493346900001
出版者SPRINGER HEIDELBERG
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42402
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Shi; Zi, Kangli
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Yang, Jing,Wang, Shi,Zi, Kangli,et al. SILTD: Structural Information for LLM-Generated Text Detection[J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS,2025:16.
APA Yang, Jing,Wang, Shi,Zi, Kangli,Sun, Yanshun,Huang, Yuwei,&Luo, Tianyu.(2025).SILTD: Structural Information for LLM-Generated Text Detection.INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS,16.
MLA Yang, Jing,et al."SILTD: Structural Information for LLM-Generated Text Detection".INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS (2025):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Jing]的文章
[Wang, Shi]的文章
[Zi, Kangli]的文章
百度学术
百度学术中相似的文章
[Yang, Jing]的文章
[Wang, Shi]的文章
[Zi, Kangli]的文章
必应学术
必应学术中相似的文章
[Yang, Jing]的文章
[Wang, Shi]的文章
[Zi, Kangli]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。