CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Impact Analysis of Delayed Updates for Mobile Decentralized Federated Learning: A Delay-Tolerant Training Strategy for Real-World Edge Intelligence
Zeng, Yong1; Liu, Siyuan4; Xu, Zhiwei2,3; Tian, Jie5
2025-05-01
发表期刊JOURNAL OF INFORMATION SCIENCE AND ENGINEERING
ISSN1016-2364
卷号41期号:3页码:627-644
摘要Decentralized Federated learning is a distributed learning framework by learning a model with aggregated parameters among nearby participants, while keeping all the training data on the participants. Considering the various heterogeneous scenarios of mobile participants, the impact of transmission delay of updates during model training is non-negligible for data-intensive intelligent applications on mobile devices, e.g., intelligent medical services, automated driving vehicles, etc.. Although the latest solutions reuse the parameter updates for model parameter aggregating and approach a global model, there is no rational threshold for the delayed updates to guarantee model convergence. To address this problem, we analyze the impact of delayed updates for decentralized federated learning, and provide a theoretical bound for these updates based on augmented Lagrange function to achieve model convergence. Thereafter, we propose a novel decentralized federated learning scheme to enhance the corporate strategy of mobile computing devices. It releases the requirement for aggregating participants' updates within a specific time period, and provide a theoretical threshold for parameter updating delay. The latest versions for the delayed updates are reused to continue model training, in case the model parameters are not collected or updated within the theoretical threshold. Finally, we implement experiments on a real-world test bed, and demonstrate that delay-adaptive-DFL is more efficient than the latest baselines.
关键词edge intelligence decentralized federated learning theoretical bound for delayed updates delay-tolerant decentralized training
DOI10.6688/JISE.20250541(3).0007
收录类别SCI
语种英语
资助项目State Key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications)[SKLNST-2020-1-18]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:001488545700007
出版者INST INFORMATION SCIENCE
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42386
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xu, Zhiwei
作者单位1.Sichuan Tengden Technol Co Ltd, Chengdu 611730, Sichuan, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China
3.Tianjin Univ Sci & Technol, Haihe Lab ITAI, Tianjin, Peoples R China
4.Inner Mongolia Univ Technol, Coll Data Sci & Applicat, Hohhot 010021, Mongolia, Peoples R China
5.New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
推荐引用方式
GB/T 7714
Zeng, Yong,Liu, Siyuan,Xu, Zhiwei,et al. Impact Analysis of Delayed Updates for Mobile Decentralized Federated Learning: A Delay-Tolerant Training Strategy for Real-World Edge Intelligence[J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING,2025,41(3):627-644.
APA Zeng, Yong,Liu, Siyuan,Xu, Zhiwei,&Tian, Jie.(2025).Impact Analysis of Delayed Updates for Mobile Decentralized Federated Learning: A Delay-Tolerant Training Strategy for Real-World Edge Intelligence.JOURNAL OF INFORMATION SCIENCE AND ENGINEERING,41(3),627-644.
MLA Zeng, Yong,et al."Impact Analysis of Delayed Updates for Mobile Decentralized Federated Learning: A Delay-Tolerant Training Strategy for Real-World Edge Intelligence".JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 41.3(2025):627-644.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zeng, Yong]的文章
[Liu, Siyuan]的文章
[Xu, Zhiwei]的文章
百度学术
百度学术中相似的文章
[Zeng, Yong]的文章
[Liu, Siyuan]的文章
[Xu, Zhiwei]的文章
必应学术
必应学术中相似的文章
[Zeng, Yong]的文章
[Liu, Siyuan]的文章
[Xu, Zhiwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。