CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Zhang, Rui1; Meng, Qi2; Zhu, Rongchan3; Wang, Yue4; Shi, Wenlei5; Zhang, Shihua2; Ma, Zhi-Ming2; Liu, Tie-Yan6
2025-06-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号47期号:6页码:5059-5075
摘要In scenarios with limited available data, training the function-to-function neural PDE solver in an unsupervised manner is essential. However, the efficiency and accuracy of existing methods are constrained by the properties of numerical algorithms, such as finite difference and pseudo-spectral methods, integrated during the training stage. These methods necessitate careful spatiotemporal discretization to achieve reasonable accuracy, leading to significant computational challenges and inaccurate simulations, particularly in cases with substantial spatiotemporal variations. To address these limitations, we propose the Monte Carlo Neural PDE Solver (MCNP Solver) for training unsupervised neural solvers via the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles. Compared to other unsupervised methods, MCNP Solver naturally inherits the advantages of the Monte Carlo method, which is robust against spatiotemporal variations and can tolerate coarse step size. In simulating the trajectories of particles, we employ Heun's method for the convection process and calculate the expectation via the probability density function of neighbouring grid points during the diffusion process. These techniques enhance accuracy and circumvent the computational issues associated with Monte Carlo sampling. Our numerical experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency compared to other unsupervised baselines.
关键词Training Monte Carlo methods Spatiotemporal phenomena Accuracy Probabilistic logic Neural networks Numerical models Mathematical models Finite difference methods Diffusion processes Neural PDE solver Monte Carlo method Feynman-Kac formula AI for PDE
DOI10.1109/TPAMI.2025.3548673
收录类别SCI
语种英语
资助项目NSFC[9247010235] ; National Key Research and Development Program of China[2019YFA0709501] ; CAS Project for Young Scientists in Basic Research[YSBR-034]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001484716600041
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42380
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Meng, Qi
作者单位1.Renmin Univ China, Gaoling Sch Artificial Intelligence, Beijing 100872, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
3.Beijing Inst Technol, Beijing 100081, Peoples R China
4.Beijing Jiaotong Univ, Beijing 100044, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
6.Zhongguancun Acad, Beijing 100094, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Rui,Meng, Qi,Zhu, Rongchan,et al. Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2025,47(6):5059-5075.
APA Zhang, Rui.,Meng, Qi.,Zhu, Rongchan.,Wang, Yue.,Shi, Wenlei.,...&Liu, Tie-Yan.(2025).Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,47(6),5059-5075.
MLA Zhang, Rui,et al."Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 47.6(2025):5059-5075.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Rui]的文章
[Meng, Qi]的文章
[Zhu, Rongchan]的文章
百度学术
百度学术中相似的文章
[Zhang, Rui]的文章
[Meng, Qi]的文章
[Zhu, Rongchan]的文章
必应学术
必应学术中相似的文章
[Zhang, Rui]的文章
[Meng, Qi]的文章
[Zhu, Rongchan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。