CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Modeling Multi-Granularity Context Information Flow for Pavement Crack Detection
Pang, Junbiao1; Xiong, Baocheng1; Wu, Jiaqi1; Huang, Qingming2,3
2025-07-01
发表期刊IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
ISSN1524-9050
卷号26期号:7页码:9165-9174
摘要Pavement cracks have a highly complex spatialstructure, a low contrasting background and a weak spatialcontinuity, posing a significant challenge to an effective crackdetection method. To precisely localize crack from an image, it iscritical to effectively extract and aggregate multi-granularity con-text, including the fine-grained local context around the cracks(in spatial-level) and the coarse-grained semantics (in semantic-level). In this paper, we apply the dilated convolution as thebackbone feature extractor to model local context, then we builda context guidance module to leverage semantic context to guidelocal feature extraction at multiple stages. To handle label align-ment between stages, we apply the Multiple Instance Learning(MIL) strategy to align the feature between two stages. In addi-tion, to our best knowledge, we have released the largest, mostcomplex and most challenging Bitumen Pavement Crack (BPC)dataset. The experimental results on the three crack datasetsdemonstrate that the proposed method performs well and outper-forms the current state-of-the-art methods. On BPC, the proposedmodel achieved AP 88.32% with the 16.89 M parameters underthe 45.36 GFlops runing speed. Datset and code are publiclyavailable at: https://github.com/pangjunbiao/BPC-Crack-Dataset.
关键词Feature extraction Semantics Heating systems Context modeling Noise Convolution Asphalt Semantic segmentation YOLO Training Crack detection context information multi-scale spatial structure
DOI10.1109/TITS.2024.3438883
收录类别SCI
语种英语
WOS研究方向Engineering ; Transportation
WOS类目Engineering, Civil ; Engineering, Electrical & Electronic ; Transportation Science & Technology
WOS记录号WOS:001508153100001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42370
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Pang, Junbiao
作者单位1.Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Pang, Junbiao,Xiong, Baocheng,Wu, Jiaqi,et al. Modeling Multi-Granularity Context Information Flow for Pavement Crack Detection[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2025,26(7):9165-9174.
APA Pang, Junbiao,Xiong, Baocheng,Wu, Jiaqi,&Huang, Qingming.(2025).Modeling Multi-Granularity Context Information Flow for Pavement Crack Detection.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,26(7),9165-9174.
MLA Pang, Junbiao,et al."Modeling Multi-Granularity Context Information Flow for Pavement Crack Detection".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 26.7(2025):9165-9174.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pang, Junbiao]的文章
[Xiong, Baocheng]的文章
[Wu, Jiaqi]的文章
百度学术
百度学术中相似的文章
[Pang, Junbiao]的文章
[Xiong, Baocheng]的文章
[Wu, Jiaqi]的文章
必应学术
必应学术中相似的文章
[Pang, Junbiao]的文章
[Xiong, Baocheng]的文章
[Wu, Jiaqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。