CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Rectangle Transformation Problem
Wang, Shaojiang1,2; He, Kun2,3; Pan, Yicheng4; Xia, Mingji1,2
2019-07-01
发表期刊ALGORITHMICA
ISSN0178-4617
卷号81期号:7页码:2876-2898
摘要In this paper, we propose the rectangle transformation problem (RTP) and its variants. RTP asks for rectangle partitions on two rectangles of the same area which produce two identical sets of pieces. We are interested in the minimum RTP which requires to minimize the partition size. This initiates the algorithmic study of dissection problems in module number optimization, particularly in the category of rectangle partition. We mainly focus on the strict rectangle transformation problem (SRTP) in which rotation is not allowed during the transformation. It has been shown that SRTP has no finite solution if the ratio of the two parallel side lengths of input rectangles is irrational. So we turn to its complemental case, SRTP with integral input, denoted by SIRTP, in which case both side lengths are assumed integral. We give a polynomial time algorithm ALGSIRTP which gives a solution at most q/p+7log2p to SIRTP(p,q) (qp), where p and q are two integral side lengths of input rectangles pxq and qxp. Note that q/p is an intrinsic lower bound for SIRTP(p,q). So ALGSIRTP is a (7logp)-approximation algorithm for minimum SIRTP(p,q). On the other hand, we show that for any epsilon>0 and any constant range (1,1+), there are integers p and q (q>p) of ratio q/p in this range, such that there is no solution less than max{q/p,log21-epsilon q} to SIRTP(p,q). This is an almost tight bound since the algorithm ALGSIRTP gives an upper bound 7log2p+O(1) in this case. We also raise a long series of open questions for further research along this line.
关键词Rectangle transformation problem (RTP) Strict RTP Rectangle tiling pattern Smith diagram Upper and lower bounds
DOI10.1007/s00453-019-00563-y
收录类别SCI
语种英语
资助项目National Science Foundation for Young Scientists of China[61807034] ; National Natural Science Foundation of China[61433014]
WOS研究方向Computer Science ; Mathematics
WOS类目Computer Science, Software Engineering ; Mathematics, Applied
WOS记录号WOS:000467379400009
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4236
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Pan, Yicheng
作者单位1.Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing, Peoples R China
4.Beihang Univ, State Key Lab Software Dev Environm, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Shaojiang,He, Kun,Pan, Yicheng,et al. Rectangle Transformation Problem[J]. ALGORITHMICA,2019,81(7):2876-2898.
APA Wang, Shaojiang,He, Kun,Pan, Yicheng,&Xia, Mingji.(2019).Rectangle Transformation Problem.ALGORITHMICA,81(7),2876-2898.
MLA Wang, Shaojiang,et al."Rectangle Transformation Problem".ALGORITHMICA 81.7(2019):2876-2898.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Shaojiang]的文章
[He, Kun]的文章
[Pan, Yicheng]的文章
百度学术
百度学术中相似的文章
[Wang, Shaojiang]的文章
[He, Kun]的文章
[Pan, Yicheng]的文章
必应学术
必应学术中相似的文章
[Wang, Shaojiang]的文章
[He, Kun]的文章
[Pan, Yicheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。