CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Is quantum optimization ready? An effort towards neural network compression using adiabatic quantum computing
Wang, Zhehui1; Choong, Benjamin Chen Ming1; Huang, Tian2; Gerlinghoff, Daniel1; Goh, Rick Siow Mong1; Liu, Cheng3; Luo, Tao1
2026
发表期刊FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE
ISSN0167-739X
卷号174页码:11
摘要Quantum optimization is the most mature quantum computing technology to date, providing a promising approach towards efficiently solving complex combinatorial problems. Methods such as adiabatic quantum computing (AQC) have been employed in recent years on important optimization problems across various domains. In deep learning, deep neural networks (DNN) have reached immense sizes to support new predictive capabilities. Optimization of large-scale models is critical for sustainable deployment, but becomes increasingly challenging with ever-growing model sizes and complexity. While quantum optimization is suitable for solving complex problems, its application to DNN optimization is not straightforward, requiring thorough reformulation for compatibility with commercially available quantum devices. In this work, we explore the potential of adopting AQC for fine-grained pruning-quantization of convolutional neural networks. We rework established heuristics to formulate model compression as a quadratic unconstrained binary optimization (QUBO) problem, and assess the solution space offered by commercial quantum annealing devices. Through our exploratory efforts of reformulation, we demonstrate that AQC can achieve effective compression of practical DNN models. Experiments demonstrate that adiabatic quantum computing (AQC) not only outperforms classical algorithms like genetic algorithms and reinforcement learning in terms of time efficiency but also excels at identifying global optima.
关键词Adiabatic quantum computing Quantum annealing Neural network optimization Model compression
DOI10.1016/j.future.2025.107908
收录类别SCI
语种英语
资助项目National Research Foundation Singapore, under its Quantum Engineering Programme 2.0 (National Quantum Computing Hub)[NRF2021-QEP2-02-P01] ; A*STAR[C230917003]
WOS研究方向Computer Science
WOS类目Computer Science, Theory & Methods
WOS记录号WOS:001511454300003
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42362
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Luo, Tao
作者单位1.ASTAR, Inst High Performance Comp IHPC, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
2.Huadian Coal Ind Grp Co Ltd, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Zhehui,Choong, Benjamin Chen Ming,Huang, Tian,et al. Is quantum optimization ready? An effort towards neural network compression using adiabatic quantum computing[J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE,2026,174:11.
APA Wang, Zhehui.,Choong, Benjamin Chen Ming.,Huang, Tian.,Gerlinghoff, Daniel.,Goh, Rick Siow Mong.,...&Luo, Tao.(2026).Is quantum optimization ready? An effort towards neural network compression using adiabatic quantum computing.FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE,174,11.
MLA Wang, Zhehui,et al."Is quantum optimization ready? An effort towards neural network compression using adiabatic quantum computing".FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 174(2026):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Zhehui]的文章
[Choong, Benjamin Chen Ming]的文章
[Huang, Tian]的文章
百度学术
百度学术中相似的文章
[Wang, Zhehui]的文章
[Choong, Benjamin Chen Ming]的文章
[Huang, Tian]的文章
必应学术
必应学术中相似的文章
[Wang, Zhehui]的文章
[Choong, Benjamin Chen Ming]的文章
[Huang, Tian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。