CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Efficient Distillation Using Channel Pruning for Point Cloud-Based 3D Object Detection
Li, Fuyang1; Min, Chen2; Wang, Juan3; Xiao, Liang1; Zhao, Dawei1; Nie, Yiming1; Dai, Bin1
2025-06-13
发表期刊IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
ISSN1524-9050
页码15
摘要Although point cloud-based 3D object detectors have advanced significantly in recent years, they are frequently hindered by substantial computational overheads. Lightweight model techniques, such as knowledge distillation, have recently been proven effective for 3D object detector compression. However, neural network pruning's complementary role in knowledge distillation is often overlooked. In this paper, we propose an efficient distillation using channel pruning for point cloud-based 3D object detection. Firstly, given the complete teacher model, we introduce random and magnitude channel pruning methods to generate several compact student models and investigate the effects of different combinations on 3D and 2D layers. Secondly, we introduce model compression scores to explore the impact of channel compression ratios and input resolutions, enabling us to select suitable pruned models for distillation from the given set. Furthermore, we employ multi-source knowledge distillation to facilitate more effective spatial and semantic knowledge transfer. To highlight the features of the foreground regions during distillation, we then propose a soft pivotal position selection mask. Extensive evaluations on various datasets using both pillar-and voxel-based 3D detectors validate the efficiency of our method in compressing point cloud-based 3D detectors. Codes are publicly available at https://github.com/lifuyang-1919/Efficient-Distillation.git
关键词Knowledge distillation 3D object detection point cloud point cloud network pruning network pruning autonomous driving autonomous driving autonomous driving
DOI10.1109/TITS.2025.3574213
收录类别SCI
语种英语
WOS研究方向Engineering ; Transportation
WOS类目Engineering, Civil ; Engineering, Electrical & Electronic ; Transportation Science & Technology
WOS记录号WOS:001508152800001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42356
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xiao, Liang
作者单位1.Chinese Acad Mil Sci, Def Innovat Inst, Beijing 100071, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
推荐引用方式
GB/T 7714
Li, Fuyang,Min, Chen,Wang, Juan,et al. Efficient Distillation Using Channel Pruning for Point Cloud-Based 3D Object Detection[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2025:15.
APA Li, Fuyang.,Min, Chen.,Wang, Juan.,Xiao, Liang.,Zhao, Dawei.,...&Dai, Bin.(2025).Efficient Distillation Using Channel Pruning for Point Cloud-Based 3D Object Detection.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,15.
MLA Li, Fuyang,et al."Efficient Distillation Using Channel Pruning for Point Cloud-Based 3D Object Detection".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS (2025):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Fuyang]的文章
[Min, Chen]的文章
[Wang, Juan]的文章
百度学术
百度学术中相似的文章
[Li, Fuyang]的文章
[Min, Chen]的文章
[Wang, Juan]的文章
必应学术
必应学术中相似的文章
[Li, Fuyang]的文章
[Min, Chen]的文章
[Wang, Juan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。