CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
UncTrack: Reliable Visual Object Tracking With Uncertainty-Aware Prototype Memory Network
Yao, Siyuan1; Guo, Yang1; Yan, Yanyang2; Ren, Wenqi3; Cao, Xiaochun3
2025
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号34页码:3533-3546
摘要Transformer-based trackers have achieved promising success and become the dominant tracking paradigm because of their accuracy and efficiency. Despite the substantial progress, most of the existing approaches handle object tracking as a deterministic coordinate regression problem, while the target localization uncertainty has been largely overlooked, which hampers trackers' ability to maintain reliable target state prediction in challenging scenarios. To address this issue, we propose UncTrack, a novel uncertainty-aware transformer-based tracker that predicts the target localization uncertainty and incorporates this uncertainty information for accurate target state inference. Specifically, UncTrack uses a transformer encoder to perform feature interactions between the template and search images. The output features are passed into an uncertainty-aware localization decoder (ULD) to coarsely predict the corner-based localization and the corresponding localization uncertainty. Then, the localization uncertainty is sent into a prototype memory network (PMN) to excavate valuable historical information to identify whether the target state prediction is reliable. To enhance the template representation, the samples with high confidence are fed back into the prototype memory bank for memory updating, which makes the tracker more robust to challenging appearance variations. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods. Our code is available at https://github.com/ManOfStory/UncTrack
关键词Uncertainty Location awareness Target tracking Transformers Reliability Prototypes Object tracking Visualization Accuracy Training Reliable object tracking uncertainty estimation prototype memory network memory updating
DOI10.1109/TIP.2025.3559796
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62402055] ; National Natural Science Foundation of China[62302480] ; Shenzhen Science and Technology Program[KQTD20221101093559018]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001506596200013
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42342
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cao, Xiaochun
作者单位1.Beijing Univ Posts & Telecommun, Sch Comp Sci, Natl Pilot Software Engn Sch, Beijing 100876, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
3.Sun Yat Sen Univ, Sch Cyber Sci & Technol, Shenzhen Campus, Shenzhen 518107, Peoples R China
推荐引用方式
GB/T 7714
Yao, Siyuan,Guo, Yang,Yan, Yanyang,et al. UncTrack: Reliable Visual Object Tracking With Uncertainty-Aware Prototype Memory Network[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2025,34:3533-3546.
APA Yao, Siyuan,Guo, Yang,Yan, Yanyang,Ren, Wenqi,&Cao, Xiaochun.(2025).UncTrack: Reliable Visual Object Tracking With Uncertainty-Aware Prototype Memory Network.IEEE TRANSACTIONS ON IMAGE PROCESSING,34,3533-3546.
MLA Yao, Siyuan,et al."UncTrack: Reliable Visual Object Tracking With Uncertainty-Aware Prototype Memory Network".IEEE TRANSACTIONS ON IMAGE PROCESSING 34(2025):3533-3546.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yao, Siyuan]的文章
[Guo, Yang]的文章
[Yan, Yanyang]的文章
百度学术
百度学术中相似的文章
[Yao, Siyuan]的文章
[Guo, Yang]的文章
[Yan, Yanyang]的文章
必应学术
必应学术中相似的文章
[Yao, Siyuan]的文章
[Guo, Yang]的文章
[Yan, Yanyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。